ClassRoom

Magic Squares Using Semi-Primes

ANAND PRAKASH

ikipedia [1] defines a semi-prime as *a natural number that is the product of two prime numbers.* The definition allows the two primes in the product to be equal to each other, so the semi-primes include the squares of prime numbers. Displayed below are the first forty semi-primes.

4	6	9	10	14	15	21	22	25	26
33	34	35	38	39	46	49	51	55	57
58	62	65	69	74	77	82	85	86	87
91	93	94	95	106	111	115	118	119	121

Many number theoretic questions of interest can be asked about the semi-primes, for example: what is the longest sequence of consecutive numbers, all of which are semiprimes? It is not possible to have a sequence of four consecutive numbers, all of which are semi-primes, for the simple reason that any sequence of four consecutive numbers must contain a multiple of 4, and the only multiple of 4 which is a semi-prime is 4 itself (and it does not contain any semi-prime adjacent to it).

However, instances of three consecutive numbers, all of which are semi-primes, are easy to find. Table 1 reveals that the first such instance is 33, 34, 35, and the next one is 85, 86, 87. Do there exist infinitely many such instances? It is difficult to say.

More instances of consecutive semi-primes

Here are all instances of three consecutive numbers under 1000, all of which are semi-primes, listed in the form of a matrix (each row gives the three numbers).

Keywords: Magic square, semi-prime

Everyone knows what	(33	34
a magic square is.		
Sometimes, it is fun to try	85	8
to make a magic square	93	9
in which all the numbers	121	12
belong to some specified	141	14
subset of the natural	201	20
numbers. For example, we		
may want all the numbers	213	21
to be primes; or we may	217	21
want all the numbers to be	301	30
squares; and so on. In this	393	39
short note, we explore the	445	44
possibility of constructing	633	63
a magic square entirely		
using semi-primes. This	697	69
seems quite difficult!	841	84
However, if we relax the	921	92
conditions slightly, we are	`	
able to make progress.		

'	33	34	35
	85	86	87
	93	94	95
	121	122	123
	141	142	143
	201	202	203
	213	214	215
	217	218	219
	301	302	303
	393	394	395
	445	446	447
	633	634	635
	697	698	699
	841	842	843
	921	922	923

We display below the results of two such attempts. It is rather curious that many of the triples listed above can be seen in these arrays.

A partial magic square of order 6

Here is a partial magic square of order 6, all of whose entries are semi-primes; all six of the columns have the same total (1732), but only the first four rows have that total (the other two row sums are 1996 and 1468, respectively).

634	218	217	219	301	143
445	142	303	302	94	446
201	447	87	86	697	214
202	141	95	698	393	203
215	85	635	394	34	633
35	699	395	33	213	93

Another attempt at a magic square of order 6

Here is the result of another such attempt. This time we have permitted ourselves the use of a few numbers which are not semi-primes (specifically, the triple 117,118,119), but we do obtain a complete magic square of order six, with magic constant 1442. Here it is:

634	85	301	87	118	217
202	201	447	203	86	303
215	33	214	446	393	141
213	395	219	218	95	302
143	635	119	394	117	34
35	93	142	94	633	445

References

1. Wikipedia, "semi-prime", https://en.wikipedia.org/wiki/semi-prime

ANAND PRAKASH runs a small garment shop at Kesariya village in the state of Bihar. He has a keen interest in number theory and recreational mathematics and has published many papers in international journals in these fields. He also has a deep interest in classical Indian music as well as cooking. In addition, he has written a large number of poems in Hindi. He may be contacted at prakashanand805@gmail.com.