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The seed-idea of this article came from an activity from 
an upper primary math textbook and the modification 
in a subsequent edition. Students were asked to find the 

midpoints of the sides of an acute isosceles triangle and join them 
to form four smaller triangles, and then fold the triangles up to a 
tetrahedron. An equilateral triangle replaced the isosceles one in 
the subsequent edition. What caused this change? Wouldn’t any 
triangle generate a tetrahedron? This initial exploration revealed 
something unexpected and the findings had an eerie resemblance 
to a known result. Further discussions with more math-friendly 
minds watered and added subsequent layers to this exploration 
and took it to a newer dimension – figuratively and literally! If a 
perpendicular is dropped from the apex (which is the top vertex 
of the tetrahedron where all three vertices of the triangle meet) 
to the base, where will the foot of this perpendicular be? For an 
equilateral triangle, it is the centre of the base but would it ever 
be coincident with any of the triangle centres, i.e., centroid, 
circumcentre, incentre or orthocentre of the base for other 
triangles? We will investigate these.

This Low Floor High Ceiling (LFHC) investigation begins by 
considering a neglected question on types of triangles. Then it 
explores a particular property that helps us classify triangles. 
After that, we zoom into one class of triangles and transition 
into 3-dimensions using nets. The nets, and the solids, in turn, 
generated more questions as well as helped in tackling them. 

The first task considers types of triangles. How many are there? 
Task 1: If we consider the sides, a triangle can be isosceles or 
scalene and some isosceles triangles can be equilateral too. Angle-
wise, a triangle is acute, right or obtuse. 

Triangles to Tetrahedrons 
and beyond…
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a. How many types of triangles are there when 
both side-wise and angle-wise criteria are 
considered? 

b. For each of the above categories, find at least 
two possible angle combinations, e.g. 30°–
60°–90° and 40°–50°–90° for right scalene. 
Are there any types where only one angle 
combination is possible? If so, which one(s)? 

c. Consider two acute isosceles with angle 
combinations (a) 20°–80°–80° and (b) 
80°–50°–50°. Compare the unequal side 
with the equal sides. Find one more triangle 
with angle combination like (a) and another 
one like (b). How are the triangles like (a) 
different from those like (b)?

d. Consider the two groups of acute isosceles 
triangles (a) and (b) in the previous problem. 
Which type of triangle separates these two 
groups? Which type of triangle separates the 
obtuse isosceles from the acute ones? 

Teacher Note: There are eight types of triangles 
as follows: three types of scalene – acute, right and 

obtuse, and four types of isosceles – equilateral, 
acute (with a different 3rd side), right and obtuse. 
Out of these, equilateral and right isosceles form 
similar class of triangles with 60°–60°–60° and 
90°–45°–45° angle combinations respectively. 
Acute isosceles can be of two types depending on 
the equal sides being (a) longer or (b) shorter than 
the unequal one. This comes out very well if one 
tries to make triangles with just 10 matchsticks. 
The possibilities are 2–4–4 and 3–3–4 illustrating 
the two cases (a) and (b). The equilateral separates 
these two cases (a) and (b). So, there are five kinds 
of isosceles and they can be characterized by the 
angle θ between the equal sides: (i) 0° < θ < 60° or 
the type (a) acute, (ii) θ = 60° i.e. equilateral, (iii) 
60° < θ < 90° or the type (b) acute, (iv) θ = 90° i.e. 
right, and (v) 90° < θ < 180° or obtuse. Table 1 
includes all eight types of triangles.

The second task was seeded by the textbook 
that changed the triangle from acute isosceles 
to equilateral in subsequent editions. So, let 
us explore what happens for all eight types of 
triangles. 

Table 1 Equilateral Isosceles Scalene

 Acute Type a

Type b

Right

Obtuse
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Task 2: Consider any ΔABC. Find the midpoints 
D, E and F of the sides BC, CA and AB 
respectively. Join DE, EF and FD. 

a. Will ΔAEF, ΔBFD, ΔCDE and ΔDEF be the 
four faces of a tetrahedron (see Figure 1)? 

b. If not, find the criteria for not getting a 
tetrahedron.

c. Is there any border-line case? Explain. 

Figure 1

Teacher Note: Interestingly, not all triangles 
can be folded to a tetrahedron. The acute angled 
triangles (both isosceles and scalene) fold up and 
meet at a point to form a tetrahedron. But the 
obtuse angled triangles do not because two of the 
folded edges stay apart. The right triangles may 
create some confusion since the folded edges do 
match up (unlike obtuse) but no solid is formed 
(unlike acute). The point at which the folded 
sides meet is on the plane of the triangle so no 
solid is formed. 

Figure 2

A closer inspection of the angles formed at the 
midpoint of the longest side reveals the cause 
(see Figure 2). In an obtuse triangle, α + β < 90° 
and θ > 90°. Naturally α and β cannot cover 
all of θ (see Figure 3). Therefore, there is a gap 
between the folded edges. In the case of right 
triangles, α + β = 90° = θ i.e. α and β cover θ 
exactly. So, the folded triangle flattens out with 

the edges meeting perfectly. Only in the case of 
acute triangles, α + β > 90° > θ. Therefore, α and 
β not only cover all of θ but actually overlap a 
bit. When the edges are put together to avoid 
the overlap, we get a solid, a tetrahedron, with a 
definite height. 

So, a tetrahedron can form if and only if (iff) 
α + β > θ. It is worth noting that this angle 
inequality for a tetrahedron is very similar to the 
inequality involving the sides of any triangle  
(a + b > c, etc.).

Figure 3

The following task is a scaffold towards further 
investigations of the tetrahedrons thus formed. 
It encourages the student to create a net of a 
solid ‒ a task that demands imagination, spatial 
understanding and reasoning. 

Task 3: Consider any of the three types of acute 
isosceles ΔABC with AB = AC. (Note that this 
includes equilateral as a special case.) Let D, E and 
F be the midpoints of the sides BC, CA and AB 
respectively. We know that ΔAEF, ΔBFD, ΔCDE 
and ΔDEF will be the four faces of a tetrahedron 
(see Figure 4). Now to visualize the height of this 
solid, it is good to split it in two halves. Note 
that the plane of symmetry of this tetrahedron 
passes through the line of symmetry of ΔABC. 
So, divide ΔABC along its line of symmetry AD 
(which intersects EF at P) and cut along AD. Fold 
ΔADC along the previous fold-lines to get the 
halved tetrahedron. Observe that this is a hallow 
tetrahedron with three faces viz. ΔCDE, ΔAEP 
(= ½ of ΔAEF) and ΔDEP (= ½ of ΔDEF). What 
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are the sides of the missing face? Construct this 
missing face (on a separate piece of paper) and 
attach it to the net ΔADC along PD. Let Q be the 
third vertex of this missing triangular face. Make 
sure this triangle is oriented correctly. The side 
adjacent to AP should coincide with AP when 
folded. Similarly, the one next to DC should 
match DC. Fold this (pentagonal) net QPACD to 
form the halved tetrahedron and check that the 
fourth face fits properly.

Figure 4

Teacher Note: The sides of the fourth triangle 
must match those of the remaining three faces. 
Since AE folds up with CE to form one edge of 
the new tetrahedron, the edges of the fourth face 
will be equal to AP, PD and DC. So, the fourth 
face is a triangle ΔDPQ on DP such that DQ = 
DC and PQ = AP i.e. A, C and Q will coincide in 
the new tetrahedron (Figure 5).

Figure 5

Note that with the fourth face, we can also draw 
the height of the tetrahedron which is the same 
as the height QR from Q to PD in ΔDPQ. 

It is advisable that the net shown in Figure 5 be 
made for various measures of ∠ACB while the side 
length BC remain constant (say 12cm). Different 
nets can be made for the following values of 
∠ABC – 50°, 55°, 60° and 70° (more can be made, 

but these are crucial; Figures 6 and 7 include the 
nets corresponding to 50° and 70° respectively).

Task 4: ΔDPQ is an isosceles triangle since  
PD = PQ. 

a. How does ∠DPQ vary with ∠ACB? Do we 
get all possible isosceles types described in 
Task 1? 

b. What is the side ratio AC : BC for ΔDPQ to 
be a right triangle? 

c. What is the ratio for ΔDPQ to be equilateral? 

Teacher Note: Different groups of students can 
be given different values of ∠ACB and asked to 
create the net shown in Figure 5. Their nets can 
be then compared to gain further insights. 

Figure 6

Figure 7
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∠ACB can vary from 45° to 90° (both excluded). 
As ∠ACB increases, the height AD of ΔABC 
increases. So, for ΔDPQ, DQ remains fixed, but 
PD = PQ = ½ AD increases as ∠ACB increases. 
Therefore, ∠DPQ decreases as PD increases i.e. 
∠ACB increases. ∠DPQ is obtuse for ∠ACB = 
50° and acute for ∠ACB = 70°. A GeoGebra 
exploration with a slider for ∠ACB nicely 
demonstrates how ∠DPQ varies with the former. 

GeoGebra steps

Chose B = (–6,0) and C= (6,0), and a slider for θ 
from 45° to 90° 

D: midpoint of BC

Rotate B clockwise about C by θ to get B’

A: intersection of the line B’C and the y-axis

E: midpoint of AD, P: midpoint of AD

Draw circles (i) centred at P through A, and (ii) 
centred at D through C

Q: intersection of these two circles 

Join line segments AD, AC, DC, PE, DQ and PQ

If ΔDPQ is right angled, then PD : DQ = 1 : √2. 
Let us take DQ = DC = ½BC = 2a. So, PD = √2a. 
Also, PE = ½ × DC = a. So, CE = DE = √(PD2 + 
PE2) = √3a. Therefore AC = 2CE = 2√3a and BC 
= 2DC = 4a i.e. AC : BC = √3 : 2.

If ΔDPQ is equilateral, then PD = DQ = 2a. So, 
DE = √5a and therefore AC : BC = √5 : 2

Now that we know the different possibilities for 
ΔDPQ, it is a good idea to make the nets of the 
halved tetrahedron (as shown in Figure 5) for the 
following ratios of AC : BC – (i) 3 : 4, (ii) √3 : 2, 
(iii) 1 : 1, (iv) √5 : 2 and (v) 3 : 2. One option is 
to keep BC = 12cm and use AC = 9cm, 6√3cm, 
12cm, 6√5cm and 18cm respectively. These 
should generate (i) obtuse, (ii) right, (iii) acute 
type (b), (ii) equilateral and (v) acute type (a) 
ΔDPQ respectively.

Different groups of students can tackle the 
different nets corresponding to the five types of 
ΔDPQ from here on.

From here onwards, R is the foot of the 
perpendicular from Q (where A, B and 
C coincide) to ΔDEF. By symmetry, this 
perpendicular or ‘height’ lies on the fourth 
face of the halved tetrahedron i.e. ΔDPQ, and 
R lies on PD where P is the midpoint of EF as 
indicated in Figure 4 and Figure 5. 

The remaining tasks deal with the position 
of R on the mid-line PD of the base. The aim 
is to find R’s position w.r.t. the sides of the 
tetrahedron and explore when R coincides 
with the special points viz. the centroid, the 
circumcentre, the incentre and the orthocentre– 
of ΔDEF. 

Task 5: Since ΔDPQ can be any of the five 
possible isosceles triangles, how does the foot of 
the perpendicular R vary?

a. Is it always inside PD?

b. If not, when is it outside? What does that 
mean for the tetrahedron?

c. What is the border line case? What does that 
mean for the tetrahedron?

Teacher Note: This may come as a surprise but 
is actually a natural consequence of the types of 
ΔDPQ. The foot of the perpendicular R is inside 
PD (and therefore inside the base ΔDEF) iff 
∠DPQ is acute (Figure 8). 

When ∠DPQ is obtuse, R is outside PD. So, 
the foot of the perpendicular is outside the base 
ΔDEF. In this case, R would be on the ray DP, 
such that DR > DP. The edge AP (= QP) would 
lean outward from the base ΔDEF (Figure 9). 

The border line case is when ∠DPQ is a right 
angle. Then R and P coincide, and QP is 
perpendicular to the base (Figure 10). Table 2 
includes the nets of all five new tetrahedrons 
with R and QR ⊥ PD marked in each.
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Figure 9

Note that the 
foot of the 
perpendicular 
seems to be 
outside the base 
i.e. one face is 
leaning 'out'.

Acute isosceles type (a) triangle

Acute isosceles type (b) triangle

Nets of halved tetrahedron

One of the halved tetrahedrons

Figure 8

Figure 10

→ folded to tetrahedron

→ folded to tetrahedron

→ folded to tetrahedrons (together)

Another view – this is the 4th face ΔDPQ 

Note that the foot of the 
perpendicular seems to 
be inside the base i.e. all 
3 faces of the tetrahedron 
are leaning ‘in’.

Note that the foot of 
the perpendicular seems 
to be on an edge of the 
tetrahedron i.e. one face 
(the one that is halved) is 
perpendicular to the base.
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AC : BC = 3 : 4 
Obtuse ΔDPQ

AC : BC = 3 : 2 
Acute type (b) ΔDPQ

AC : BC = √3 : 2 
Right ΔDPQ

AC : BC = 1 : 1 
Acute type (a) ΔDPQ

AC : BC = √5 : 2 
Equilateral ΔDPQ

Table 2

Having established the variance of R along 
the ray DP, the next questions are related to 
the special points of ΔDEF along PD, viz the 
centroid, the circumcentre, the incentre and 
the orthocentre of the base. Since ΔABC and 
therefore ΔDEF are acute triangles, all four of 
these points lie inside the base. The next task is 
about locating these special points on the net. 

Task 6: Consider the net of the halved tetrahedron 
as shown in Figure 5. PD is the line of symmetry 
for the base ΔDEF. So, all four of the special points 
lie on PD. Locate each of these points on PD viz. 
a. The centroid G of ΔDEF

b. The incentre I of ΔDEF

c. The circumcentre S of ΔDEF

d. The orthocentre O of ΔDEF
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Teacher Note: The challenge is to find these 
points on the net that has only half of ΔDEF. So, 
properties of these points and the symmetry of 
isosceles triangle are to be utilized. One needs to 
draw the net on larger paper and not cut it out, 
so that the necessary constructions can be done. 

The centroid G is a point on the median PD such 
that PG = 1/3 × PD. So, PD has to be trisected 
to find G. There is an alternative way: complete 
ΔDEF (such that P is the midpoint of EF) and 
construct one more median. 

The incentre I lies on the angle bisectors. 
So, construct the bisector of ∠DEP and let it 
intersect PD at I.

Similarly, the circumcentre lies on the 
perpendicular bisector of each side. PD is the 
perpendicular bisector of EF. So, construct the 
perpendicular bisector of DE and let it intersect 
PD at S.

The orthocentre is a bit tricky. Extend EP to F so 
that FP = PE. Drop perpendicular from F to DE. 
Let it intersect PD at O. 

All of these can be done on GeoGebra as well. 

GeoGebra steps

(continued from before)

F: midpoint of AB
H: midpoint of DE, join FH
Centroid: G: intersection of FH and AD
b: angle bisector of ∠PED
In-centre: I: intersection of AD and b
c: perpendicular bisector of DE
Circumcentre: S: intersection of AD and c
d: perpendicular from F to DE
Orthocentre: O: intersection of AD and d

An interesting question at this point would be to 
explore if R coincides with any of these special 
points. In particular, are there different AC : BC 
ratios for each of these points? It can be worked 
out by computing various lengths and doing 
some tedious algebraic crunching for each of G, 

S, I and O. However, an alternative approach 
with the nets provides deeper understanding of 
the situation. 

Task 7: Mark G, S, I, O and R on PD on all the 
nets corresponding to the five types of ΔDPQ. 
What do you observe? 

Teacher Note: Considering all five nets and the 
five points marked in each of them, the following 
emerge:
1. All the five points coincide for the regular 

tetrahedron (as expected)
2. The points are always in the same sequence 

R-S-G-I-O
3. Including P and D, the order is D-R-S-G-I-O 

-P, for ∠ACB > 60° (Figure 11) and reverses 
to P-R-S-G-I-O-D for ∠ACB < 60° (Figure 
12) – the pink cross indicates the position of 
A for regular tetrahedron i.e. ∠ACB = 60°

While 1 is quite obvious, it can be rigorously 
proved. The math hungry can be engaged with 
the task. The reverse question can also be posed 
to them i.e. finding AC : BC when R coincides 
with (i) G, (ii) S, (iii) I and (iv) O. Circumradius 
and inradius can be computed in terms of AB 
and BC. 

Observation 2 is mostly known except for R. 
Those who are further interested can consider 
the various ratios along the line segment SO. 
Students may be introduced to the nine-point 
circle after this. 

But in one step, this makes it clear that R 
coincides with all these points only for the regular 
tetrahedron. For any other tetrahedron or in 
other words if ∠ACB ≠ 60°, R remains outside 
the line segment SO. 

These explorations start with something as 
basic as types of triangles which are 2D but 
soon leap into 3D. There it demands imagining 
a particular solid and unfolding the same to 
generate its net, and thus bringing it back to 
2D. But the fun starts after that when multiple 
nets are created by varying an angle (or a side). 
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This angle (or side or the ratio of the sides) 
can be considered as an independent variable. 
Students get a glimpse of how other angles and 
position of some points (or some lengths) vary 
with these independent variables. This raises new 
questions especially about critical points when 
one parameter (e.g. angle or length) changes 
while some remain fixed. It also provides insight 
into the range of variation and the various 
possibilities.

We would like to leave the reader with a last 
question: Try Task 6 for the special points of 
ΔABC. You will be pleasantly surprised! We 
hope to dive into that in a subsequent article. 

We would like to thank Dr. Prabuddha 
Chakraborty, Indian Statistical Institute for 
triggering the later parts of these explorations 
with the questions related to the foot of the 
perpendicular and the centres of the base triangle.
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