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In this short note, we study the following problem.

For which positive integers n is it true that the sum of the
positive integers from 1 till n is a perfect square?

Since the sum of the positive integers from 1 till n is
1
2n(n + 1), the problem may be restated as follows: find all
pairs (m, n) of positive integers satisfying the following
equation:

n(n + 1)
2

= m2. (1)

To solve this equation, we start with the following simple
observations:

• For any positive integer n, the integers n and n + 1 are
co-prime (i.e., they have no factors in common other
than 1).

• Precisely one of the integers n and n + 1 is even.

• If the product ab of two co-prime positive integers a and
b is a perfect square, then both a and b are perfect
squares.

Hence the following may be stated:

(i) If n is even, then 1
2n and n + 1 are co-prime integers,

so if 1
2n(n + 1) is a perfect square, then both 1

2n and
n + 1 are perfect squares.

(ii) If n is odd, then n and 1
2(n + 1) are co-prime integers,

so if 1
2n(n + 1) is a perfect square, then both n and

1
2(n + 1) are perfect squares.
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A SIMPLER WAY TO BISECT AN ANGLE
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Angle bisection using ruler and compass is part of the standard geometry syllabus at the
upper primary level. There is a standard procedure for doing the job, and it is so simple
that one would be hard put to think of an alternative to it that is just as simple, if not
simpler. But here is such a procedure, announced in a Twitter post [1].
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Angle bisector

FIGURE 1

It can be depicted using practically no words. In Figure 1, the angle to be bisected is
∡ABC. Draw two arcs DE and FG as shown, centred at B. Next, draw the segments DG
and FE; let them intersect at I. Draw the ray BI. This is the required angle bisector.
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It follows that there are two categories of positive integers n for which the sum of the positive integers from
1 to n is a perfect square, namely:

(i) n is even and both 1
2n and n + 1 are perfect squares. This means that we have n = 2x2 and

n + 1 = y2 for some positive integers x and y.

(ii) n is odd and both n and 1
2(n + 1) are perfect squares. This means that we have n = x2 and

n + 1 = 2y2 for some positive integers x and y.

In case (i) we have y2 − 2x2 = 1, and in case (ii) we have x2 − 2y2 = −1. Observe that both these
equations are of the following kind:

u2 − 2v2 = ±1, (2)
where u and v are positive integers. So we must solve equation (2) over the positive integers.

This is a familiar equation; we have met it many times in the past. One way of generating the solutions is
to consider the powers of the irrational number 1+

√
2. To be specific, let k be any positive integer, and

let the quantity (
1+

√
2
)k

simplify to u+ v
√
2, where u and v are integers. Then we may show that u2 − 2v2 = ±1, thus providing a

solution to (2). Moreover, every solution to (2) may be obtained in this manner, simply by giving different
values to k. For example,

• k = 1 yields u = 1 and v = 1. Here u2 − 2v2 = −1, so we have n = u2 = 1. This corresponds to the
not-particularly-interesting relation 1 = 12.

• k = 2 yields (1+
√
2)2 = 3+ 2

√
2, i.e., u = 3 and v = 2. Here u2 − 2v2 = 1, so we have

n = 2v2 = 8. This corresponds to the first interesting instance of the property we are looking for:

1+ 2+ 3+ · · ·+ 7+ 8 =
8× 9
2

= 36 = 62.

• k = 3 yields (1+
√
2)3 = 7+ 5

√
2, i.e., u = 7 and v = 5. Here u2 − 2v2 = −1, so we have

n = u2 = 49. This corresponds to the relation

1+ 2+ 3+ · · ·+ 48+ 49 =
49× 50

2
= 1225 = 352.

Proof that the procedure works. The most effective way of showing that this procedure invariably yields a
solution is through induction. However, on this occasion we opt to use a non-inductive approach

As is well-known, if we have
(1+

√
2)k = u + v

√
2, (3)

where u, v are integers, then we also have

(1−
√
2)k = u − v

√
2. (4)

The most direct approach now is to make use of the following two facts:

(1+
√
2) · (1−

√
2) = −1,

and
(u + v

√
2) · (u − v

√
2) = u2 − 2v2.
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We now get, from (3) and (4):
u2 − 2v2 = (−1)k = ±1,

as required.

A slightly more cumbersome approach is to find explicit expressions for u and v in terms of k, and then to
work with those expressions. For convenience, we write α = 1+

√
2 and β = 1−

√
2. From (3) and (4),

we obtain, by addition and subtraction respectively:

u =
αk + βk

2
,

and

v =
αk − βk

2
√
2

.

Hence:

u2 − 2v2 =
α2k + 2(αβ)k + β2k

4
− α2k − 2(αβ)k + β2k

4
= (αβ)k = (−1)k, since αβ = −1.

Though this approach is, as noted, more cumbersome, it has the advantage of yielding explicit expressions
for u and v in terms of k.

Every solution? It remains to be shown that the above procedure generates every possible solution to the
given problem. As one may expect, this part is more challenging.

One approach is to use the above idea in reverse. This enables us to generate solutions using smaller
numbers from solutions using large numbers. To make this more clear, we consider the identity

(u + v
√
2) · (1+

√
2) = (u + 2v) + (u + v)

√
2.

This shows that from a solution (x, y) = (u, v) to the equation x2 − 2y2 = ±1, where u, v are positive
integers, we may generate another positive integral solution (x, y) = (u + 2v, u + v), and this clearly
features larger numbers than the original solution. For example, starting with the solution (x, y) = (1, 1)
and iterating the map (u, v) � −→ (u + 2v, u + v), we obtain the following infinite chain of solutions:

(1, 1), (3, 2), (7, 5), (17, 12), (41, 29), (99, 70), . . . .

Now we apply this idea in reverse. Write u′ = u + 2v and v′ = u + v. Then clearly:

u = 2v′ − u′, v = u′ − v′.

From this we infer that given a solution (x, y) = (u, v) to the equation x2 − 2y2 = ±1, where u, v are
positive integers, we may generate another solution (x, y) = (2v − u, u − v), and this features strictly
smaller numbers than the original solution.

Now note the following (here u, v are non-negative integers):

• If u2 − 2v2 = ±1 and v > 1, then 2v > u > v > 1.

• If u2 − 2v2 = ±1 and v > 1, then (u, v) > (1, 1) and also (2v − u, u − v) > (1, 1).

Reasoning in this manner, we see that starting with any solution to the given equation x2 − 2y2 = ±1 and
iterating the map described above, (u, v) � −→ (2v − u, u − v), we obtain a decreasing sequence of
solutions. As it is not possible to have an infinitely long strictly decreasing sequence of positive integers, it
must happen at some stage that we reach a solution with v = 1, which means that we have reached the
solution (1, 1), at which point the decrease necessarily comes to a halt.
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Reversing the map again, we infer that every solution to the equation belongs to the chain shown above:

(1, 1), (3, 2), (7, 5), (17, 12), (41, 29), (99, 70), . . . .

But this implies that the procedure we have described does generate every possible solution to the
problem. No solution is missed out.

Recalling the connection between the integer pairs (u, v) for which u2 − 2v2 = ±1 and the integers n for
which the sum of the positive integers from 1 till n is a perfect square (namely: if v is odd, then n = u2,
and if v is even, then n = 2v2), we see that the integers n for which the sum of the positive integers from 1
till n is a perfect square are the following:

1, 8, 49, 288, 1681, 9800, . . . .

Moreover, this is a complete list; no solution is missed out.
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