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We develop a direct geometric method to determine the orbital parameters and mass of a planet,
and we then apply the method to Neptune using high-precision data for the other planets in the
solar system. The method is direct in the sense that it does not involve curve fitting. This paper,
thereby, offers a new pedagogical approach to orbital mechanics that could be valuable in a physics
classroom.

I. INTRODUCTION

The discovery of Neptune in 1846 by observing devia-

tions of Uranus from its predicted orbit remains one of

the crowning achievements of Newtonian mechanics.1–3

The discoverers faced a difficult inverse problem, eas-

ily solvable today with electronic computers, but Her-

culean in the mid-nineteenth century.4,5 The discover-

ers, Urbain Le Verrier and John Couch Adams, indepen-

dently investigated Alexis Bouvard’s ephemeris tables for

Uranus to check their accuracy and found no computa-

tional errors.4–6 With this, it became clear that the prob-

lem lay not with the tables, but rather with the planet

itself! The mathematical problem of locating the precise

position and determining the mass of the perturbing ob-

ject was non-trivial;5,6 Le Verrier and Adams proceeded

by linearizing the system of equations involved and solv-

ing them by least squares. Computing the semi-major

axis of the perturbing body was also a complex problem,

for which an informed estimate had to be made. This was

done using the Titius-Bode law,7 which held for the five

planets known since antiquity. Neptune has subsequently

been “rediscovered” with simpler methods several times

after its real discovery.6,8–12

In today’s age of high-precision data, orbital state vec-

tor data of most solar system bodies are available.13 We

have retrieved these data for the major planets in Carte-

sian coordinates, with the origin at the instantaneous

center of the Sun (see the Appendix for more details).

These data, collected at a time step of 2 h, range from

the date of Uranus’ discovery (March 1781) to the present

day (March 2020). It is clear that we have an advantage

over the discoverers, in terms of the nature, quality and

duration of data at hand. Using this advantage, we de-

scribe a purely geometric way of locating a planet, focus-

ing on Neptune.

Since we work with state vector data and not the or-

bital parameters of the known planets, our approach nat-

urally lends itself to vector analysis. The geometrical

ideas are encoded into scalar (dot) products and vector

(cross) products. The method emphasizes basic ideas

of classical mechanics, such as Newton’s laws, Kepler’s

laws, and motion in the presence of an inverse square

law force, but does not use curve fitting to locate the

unknown planet. All these ideas are typically encoun-

tered in an undergraduate physics curriculum, making

our method better suited to pedagogical purposes than

the historical ones.

II. EQUATION OF MOTION

Our model comprises only nine objects: the Sun, the

seven known planets at the time (Mercury to Uranus) and

Neptune, which we consider unknown for the purpose of

demonstrating our method.14 Newton’s law written for
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the ith object reads

d2xi

dt2
= −

∑
j 6=i

GMj
xi − xj

|xi − xj |3
(i = 1 to 9), (1)

where G is the universal gravitational constant, xi s and

xj s stand for the position of the center of mass (COM) of

the objects (including their moons, if any), and Mj s are

the masses (again including the moons, if any). However,

we need not worry about solving these coupled differen-

tial equations, for we have the solution in terms of data

for all objects except Neptune, whose parameters need

to be determined using these equations.

The d2xi/dt
2 in Eq. (1) denote accelerations with re-

spect to an inertial frame. The COM of the solar system

is a reasonably good choice for such a frame. However,

the COM is not an observable, but rather a construct

that can only be obtained after having knowledge of all

constituents of the system, including Neptune (N), which

is yet to be “discovered.” We circumvent this problem

by subtracting Eq. (1) written for the Sun (�) from the

same equation written for Uranus (U). This gives

GMN

(
rN − rU
|rN − rU |3

− rN
|rN |3

)
= V (t), (2)

where

V (t) =
d2rU
dt2

+G
(
M� +MU

) rU
|rU |3

−
∑

j 6=�,U,N

GMj

(
rj − rU
|rj − rU |3

− rj
|rj |3

)
(3)

and where ri = xi − x�, which are relative coordinates

with respect to the Sun. It is instructive to write down

all the terms explicitly to understand the derivation of

Eqs. 2 and 3, and to note that ri − rj = xi − xj .

In Eq. (3), the ri s are observable without a priori

knowledge of Neptune. Thus, with Eq. (2) and the as-

sembled data from Ref. 13 (as elaborated in Sec. I), V (t)

is known; see Sec. III for a physical understanding of

this vector. The stage is now set to find the unknowns

rN (t) and MN , which we do through a purely geometric

approach.
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FIG. 1. The behavior of V̂ as Neptune (blue sphere—the one
on the outer orbit) moves around in its orbit, with Uranus
(brown sphere—the one on the inner orbit) held fixed. The
Sun (not shown) is at the center and the black dashed line
is the z-axis. The orbits of Uranus (brown inner orbit) and
Neptune (blue outer orbit) are both shown to be slightly in-

clined to the x–y plane. The red solid line denotes V̂ . The
green dot-dashed line denotes vector p (Eq. (4)). (a) and (c)
correspond to conjunction and opposition of the Sun–Uranus–
Neptune system, respectively. (b) and (d) correspond to con-
figurations, which are not conjunction or opposition, but still
satisfy χ = 0 (see Eq. (5) and the discussion around it). Note

that this figure is a schematic for the sake of visualizing V̂
and was not derived from any data.

III. UNDERSTANDING THE VECTOR V

Since our discussion revolves around the vector V , it

is important to discuss what it means physically. From

Eq. (2), V (t) would be zero if Neptune did not exist; it

is that part of the acceleration of Uranus not explained

by the other planets.

Consider V̂ , which is the unit vector along V . In

Fig. 1, this is denoted by a red solid vector. If rU is

imagined to be held fixed and rN is made to rotate an-

ticlockwise once around the z axis, then, simultaneously,

V̂ will complete two anticlockwise circuits around the z

axis. We will revisit V̂ in Sec. IV.

We now turn our attention to V (t) = |V (t)|, the mag-

nitude of V . This is shown in Fig. 2.15 With V being
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FIG. 2. V , which is the magnitude of V (Eq. (3)), is shown
as a function of time. The two peaks correspond to November
1822 and June 1994. As argued in Sec. III, these peaks provide
a rough estimation of the time of conjunction of the Sun–
Uranus–Neptune system.

that part of Uranus’ acceleration arising exclusively from

Neptune, the peaks in Fig. 2 are expected to correspond

to conjunctions. This can be confirmed by modeling the

orbits of Uranus and Neptune as co-planar circles around

the Sun, and obtaining from Eq. (2) that V peaks dur-

ing conjunction, irrespective of the radii of the orbits.

Hence, it is reasonable to expect that the peaks in Fig. 2,

which occurred in November 1822 and June 1994, signify

conjunctions. However, this prediction is not precise as

the planets’ orbits are neither exact circles nor exactly

co-planar. Therefore, the analysis, thus far, provides but

a rough estimate for the date of conjunction.

IV. DETERMINATION OF CONJUNCTION
AND OPPOSITION WITH URANUS

To obtain precise conjunction and opposition times, we

recall that in a spherical polar coordinate system with

the Sun at the origin, the azimuthal angle (φ) for both

Uranus and Neptune will be the same during conjunc-

tion, and differ by π radians at opposition. From Eq. (2)

and Fig. 1, it is clear that during both conjunctions and

oppositions, the vector V will have the same φ coordi-

nate as Uranus. This observation motivates us to define

a vector

p(t) = ẑ × r̂U (t), (4)
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FIG. 3. Precise determination of the conjunction and opposi-
tion of the Sun–Uranus–Neptune system. χ (Eq. (5)) is shown
as a function of time. Among the several roots of χ in the du-
ration shown, the ones occurring in August 1821 and March
1993 determine conjunctions (C1 and C2), while the one in
May 1908 determines opposition (O1). The origin of the re-
maining roots (also depicted in parts (b) and (d) of Fig. 1) is
discussed below Eq. (5).

which lies in the x–y plane and is normal to rU (t) (de-

noted as a green dot-dashed line in Fig. 1). In terms of p,

we can hope to determine a conjunction or an opposition

by checking whether V is perpendicular to p at a given

time. In other words, we define a quantity χ, which is a

measure of the projection of V̂ along p, as

χ(t) = V̂ (t) · p(t), (5)

and look for its roots.

Figure 3 shows χ as a function of time. As expected, χ

does vanish around the estimated times for conjunctions

and oppositions as obtained in the Sec. III by looking

at the peaks in Fig. 2. We have already seen that the

φ coordinate of V is the same as that of Uranus during

both conjunctions and oppositions. This observation can

also be used to further verify whether a given root of χ

corresponds to either a conjunction or an opposition.

The remaining roots of χ, which do not correspond to

conjunctions or oppositions can be understood as follows.

During conjunctions and oppositions, the projections of

both the bracketed terms in Eq. (2) on p vanish. How-

ever, χ can also vanish if the projections of these two

terms cancel each other. The relative dominance of these

terms flips when the system moves from a conjunction to
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FIG. 4. The projection of V (t) along the normal to the orbital
plane of Uranus, quantified through ξ (Eq. (6)), is shown as
a function of time. The roots of ξ in the duration shown
occur at June 1791, September 1850, June 1860, March 1932,
April 1962, and May 2015. As argued in Sec. V, the roots
in September 1850 and May 2015 can be used to precisely
determine the orbital period of Neptune.

an opposition or vice versa, resulting in an extra root be-

tween them. Basically, if the nth root corresponds to a

conjunction, the (n+2)th root will be an opposition, the

(n+ 4)th root will again be a conjunction, and so on.

In this manner, we conclude that the roots of χ in

Fig. 3, which happen to fall in August 1821 and March

1993, are conjunctions and designate them as C1 and

C2, respectively. The root falling in May 1908 then cor-

responds to an opposition, which we call O1.

V. DETERMINATION OF THE ORBITAL
PERIOD AND SEMI-MAJOR AXIS

The synodic period of Neptune with respect to Uranus

is the time difference between the conjunctions C1 and

C2: Tsy = 171.6 years. If Uranus and Neptune were

indeed co-planar and moved at constant angular speeds,

this information, along with the orbital period of Uranus,

would be sufficient to calculate the sidereal period of Nep-

tune around the Sun to be TN ≈ 165 years. However, this

is an approximation.

We, therefore, venture to obtain TN precisely by defin-

ing

ξ(t) = V̂ (t) · n̂U , (6)

where n̂U is a unit vector along
(
rU × drU

dt

)
evaluated at

our model’s epoch, March 1781 (referred to hereafter as

TI). In other words, n̂U is a unit normal to the orbital

plane of Uranus. The quantity ξ, a measure of projection

of V (t) along n̂U , is shown in Fig. 4 as a function of

time. When Neptune crosses the orbital plane of Uranus,

ξ vanishes. However, similar to the roots of χ, between

any two consecutive roots of this kind will exist another

kind of root, where the components along n̂U of the two

terms bracketed in Eq. (2) cancel each other. Thus, with

reference to Fig. 4, if the time difference between the nth

and (n + 4)th roots of ξ corresponds to TN , then that

between the (n+ 1)th and (n+ 5)th roots corresponds to

Tsy, and vice versa. In particular, the roots in June 1791

and April 1962 differ by 170.8 years, which is very close to

Tsy. Hence, the roots in September 1850 and May 2015

can be used to give TN = 164.7 years. The semi-major

axis (a) is then obtained from TN using Kepler’s third

law (assuming MN � M�) to be 30.05 astronomical

units (AU).

VI. DETERMINATION OF OTHER ORBITAL
PARAMETERS AND MASS

To begin here, the polar angle θ and the azimuthal an-

gle φ (the spherical polar coordinates) of Neptune during

a conjunction with Uranus can be determined as follows.

Equation 2 can be re-expressed as

rN = rU + |rN − rU |3
(

rN

|rN |3
+

∣∣∣∣ rN − rU

|rN − rU |3
− rN

|rN |3

∣∣∣∣ V̂ )
.

(7)

As an initial guess, we can take θ for Neptune to be π/2

radians, and, since we are dealing with a conjunction, φ

of Neptune can be taken equal to that of Uranus. By

freezing Neptune’s r coordinate to its semi-major axis a,

which has already been obtained, we have a guess for

rN . With this, every quantity on the RHS of Eq. (7) is

known. Hence, the LHS of this equation can be taken

as a better estimate for rN . This way, we can iterate

Eq. (7) to obtain φ and θ of Neptune at conjunction.

A similar procedure can be carried out for an opposi-

tion by re-expressing Eq. (2) as
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TABLE I. The converged directions (as elaborated in Sec. VI)
of conjunctions (Uranus and Neptune aligned on the same side
of the Sun) and opposition (Uranus and Neptune aligned on
the opposite sides of the Sun). φ and θ are the spherical polar
coordinates, while ψ is the angle in the orbital plane from C1.

Date (year CE) φ (rad) θ (rad) ψ (rad)

C1 August 1821 4.532 1.512 0

O1 May 1908 1.582 1.647 3.334

C2 March 1993 4.787 1.490 0.256

rN = |rN |3
(

rN − rU

|rN − rU |3
−

∣∣∣∣ rN − rU

|rN − rU |3
− rN

|rN |3

∣∣∣∣ V̂ )
(8)

and taking φ for Neptune to be π radians away from

that of Uranus.

Note that we have re-expressed Eq. (2) in two different

ways: one for conjunction (Eq. (7)) and the other for

opposition (Eq. (8)). These choices ensure convergence

of the iteration algorithm in the respective cases. The

converged values of φ and θ of Neptune after iteration

are given in Table I. Thus, we obtain the directions of

Neptune during C1, O1, and C2.

At this stage, we assume that the orbit of Neptune

is an ellipse with the Sun at one focus (Kepler’s first

law). Since the time difference between C1 and C2 is

greater than the orbital period, it is clear that C2 is ahead

of C1 in the orbit. The orbital plane is characterized

by the inclination (i) of its normal from the z axis and

the longitude of the ascending node (Ω). These can be

evaluated from the knowledge of the directions of C1 and

C2 as i = 0.1124 and Ω = 3.9806, both in radians. The

direction of O1 should be very close to this plane. A

negligible component perpendicular to this plane, if any,

can be dealt with by projecting O1 onto the plane. Let ψ

be the angle measured in the plane of the ellipse from C1.

ψ for C2 and O1 can be easily found, since we already

know the corresponding φ and θ. These values of ψ are

tabulated in Table I.

Using this information, the equation of the ellipse can

be written16 with unknowns being its eccentricity (ε) and

the distance of Neptune from the Sun (rI) at TI . These

29.5
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FIG. 5. Determination of eccentricity (ε) and the distance of
Neptune from the Sun (rI) at our model’s epoch (TI). The
solid line represents the combination of ε and rI that is con-
sistent with ψ during O1. The dashed line is the combination
of ε and rI that is consistent with ψ during C2. Their inter-
section determines ε and rI of Neptune’s orbit.

unknowns can be obtained by demanding that Neptune’s

orbit assumes the appropriate ψ values given in Table I

at the respective times.17

The combination of ε and rI that are separately con-

sistent with ψ during O1 and C2 is obtained as shown

in Fig. 5. The intersection of these curves gives the re-

quired combination of ε and rI . This gives ε = 0.0143 and

rI = 30.24 AU. The orbit of Neptune is thus completely

determined.

The time at which Neptune passes through the peri-

helion (Tp) and the argument of the perihelion (angular

coordinate of the perihelion in the orbital plane from the

ascending node, denoted by ω) emerge as November 1892

and 3.282 radians, respectively.

Thus, we now know all the orbital parameters of Nep-

tune, from which its location at any time can be deter-

mined.

The only remaining parameter is the mass of Neptune.

From Eq. (2), this can be written as

GMN = V/

∣∣∣∣ rN − rU
|rN − rU |3

− rN
|rN |3

∣∣∣∣ . (9)

Now that we know rN , we can substitute it into Eq. (9)

to obtain MN . The mass should of course be a constant,

but any deviation of the position obtained from the exact

value will cause a variation in MN . Hence, we averaged
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the MN values so obtained over the orbital period to

arrive at MN = 1.033× 1026 kg.

VII. COMPARISON WITH ACTUAL VALUES

If rN (t) is the trajectory obtained here and rN0(t) is

the actual trajectory of Neptune given by Ref. [13], one

way to characterize the error is

% deviation =
|rN (t)− rN0(t)|
|rN0(t)| × 100. (10)

The deviation of rN (t) from rN0(t) varies with time and

is always within 1.7%. As viewed from Earth, the pre-

dicted direction of Neptune always lies within one degree

of its actual direction.

Another approach to testing the quality of our solution

is by characterizing the elliptical orbit through its six

elements. The inclination (i) of the orbital axis and the

longitude of the ascending node (Ω) specify the plane of

the orbit. The semi-major axis (a) and eccentricity (ε)

specify the size and shape of the ellipse. The argument of

the perihelion (ω) specifies the orientation of the ellipse

in its plane. The time at which Neptune passes through

the perihelion (Tp) specifies the epoch.

At any given time, the instantaneous position (rN0(t))

of Neptune as seen from the Sun is already obtained from

Ref. [13]. From this, the angular momentum (L) and the

energy (E) of Neptune can be calculated. While ε and a

can be obtained from E and |L|, i and Ω can be obtained

from L̂. The calculation of Tp and ω is more involved, and

can be determined from the eccentric anomaly.16 Hence,

at each instant, the orbital elements can be calculated. If

Neptune and the Sun were isolated, the orbital elements

would be constants. However, due to perturbations by

other planets, they do vary. We summarize these vari-

ations in Table II, which also lists the orbital elements

calculated using rN (t) obtained from our method. It is

apparent that they compare well with the correspond-

ing actual values. Note that since rN (t) is presumed to

be perfectly elliptical, we obtain definite values for the

orbital parameters, not a range of values.

VIII. CONCLUSION

The discovery of Neptune was a magnificent example

of mathematical and scientific analysis. While the older

methods were certainly able to locate Neptune, they were

less transparent in terms of the usage of physics principles

and geometrical arguments than that advanced here.

Aided with modern-age data, the method we have de-

scribed to locate Neptune is simple, both conceptually

and by means of calculation. Moreover, it is also a direct

geometric method, without any curve fitting or solving of

differential equations. All steps in this method are based

on ideas encountered in an undergraduate curriculum,

such as vector analysis and the laws of planetary mo-

tion. Thus, our method offers a pedagogical alternative

to traditional methods.

This method can also be applied to the case of a hith-

erto undiscovered planet. For this, sound data for a long

enough duration (at least until one time period of the

planet) of all the other planets in the system are required.

This method can also serve to provide an initial guess for

more sophisticated analyses, be it for application within

our solar system or to exoplanetary systems.
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Appendix: DOWNLOADING THE DESIRED
DATA

The following settings were made on Ref. 13 to gener-

ate and download the data.

(1) Choose “Vectors” from the “Ephemeris Type”

menu. This will “generate a Cartesian state vec-

tor table of any (solar system) object with respect

to any major body.”
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TABLE II. Comparison of Neptune’s orbital parameters and mass, obtained using the method illustrated in this paper, with
the actual values of the osculating orbit (as elaborated in Sec. VII) in the time interval considered.

i (rad) Ω (rad) a (AU) ε ω (rad) Tp (year CE) MN (kg)

Our method 0.1124 3.9806 30.05 0.0143 3.282 Nov 1892 1.033 × 1026

Actual 0.1122–0.1123 3.9769–3.9778 29.93–30.31 0.002–0.016 1.918–3.633 Aug 1855–Aug 1901 1.025 × 1026

(2) Choose the object in question from the “Target

Body” menu.

(3) Write “@sun” in the box provided in the “Coordi-

nate Origin” menu. This will ensure that the coor-

dinate origin is fixed to the center of the Sun at all

times.

(4) From the “Time Span” menu, choose a time span in

the appropriate format (specified in the same web-

page next to these fields) and the necessary time

step.

(5) Under the “Table Settings” menu, select vec-

tor table output as “Type 2 (state vector

{x,y,z,vx,vy,vz}).” Then, choose the required out-

put units from the “output units” submenu. Now,

choose “body mean equator and node of date”

from the “reference plane” submenu. This will set

the reference x–y plane to coincide with the Sun’s

mean equator. Then, choose “ICRF/J2000.0” from

the “reference system” submenu. Leave “aberra-

tions” as “Geometric states (no aberrations; instan-

taneous ephemeris states).” Check the “labels,”

“CSV format,” and “object page” options.

(6) From the “Display/Output” menu, check the

“download/save” option so that the ephemeris re-

sults can be saved to a local file.

Then select the “Generate Ephemeris” option and a .txt

file with the ephemeris data will be downloaded.
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