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SWATI SIRCAR Definitions have changed in textbooks across ages. At 
one time, squares were not considered rectangles but 
later they were. Why this change? When we think of 

classification, we primarily create subsets of a set in a manner that 
each subset has some specific properties. Essentially there are two 
ways to do this:
1. Partition – where the original set is divided in disjoint i.e. not 

overlapping subsets.
2. Hierarchical – where nested subsets are formed so that a subset 

with more general properties is the superset of one with a more 
specific one.

The earlier definition of rectangle, i.e., a parallelogram with a 
right angle and unequal adjacent sides, followed the Partition 
classification making it a subset disjoint from squares, which are 
parallelograms with a right angle and four equal sides (Figure 1). 
This way of classification makes it easier to depict a shape since it 
doesn’t involve considering various subcases.

Figure 1: Partition

With a closer look at isosceles trapeziums

Definitions 
changing through time
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However, the present textbooks have 
switched to a Hierarchical classification 
that makes the set of squares a subset of the 
set of rectangles (Figure 2). A big reason for this 
change comes from considering the properties of 
a rectangle. The Partition definition (including 
unequal adjacent sides) does not provide a 
rectangle with any property that a square does 
not have. Or in other words, a square has all the 
properties of a rectangle. Therefore, it makes 
sense to consider a square as a (special) rectangle. 
This does lead to slight complication in depicting 
such shapes since now subcases may have to be 
considered e.g. a rectangle can look like a square 
or like one with unequal adjacent sides. 

By the same logic, squares are also rhombi and in 
fact the intersection of the sets of rectangles and 
rhombi is precisely the set of squares. Now, the 
sets of rectangles and rhombi are both subsets of 
the set of parallelograms, which itself is a subset 
of the set of trapeziums. Rhombi are also kites. 
Figure 3 represents these sets. Note that

(i) Rhombus is the intersection of parallelogram 
and kite i.e. a quad is a rhombus if and only 
if it is a parallelogram and a kite

(ii) Square is the intersection of rectangle and 
rhombus i.e. a quad is a square if and only if 
it is a rectangle and a rhombus

(iii) There is no quad which is a trapezium and a 
kite but not a parallelogram

We encourage the reader to prove each of the 
above statements. 

But most textbooks are not uniformly adopting 
this change in definition. By this line of logic, 

Figure 3

Figure 2: Hierarchy

equilateral triangles should be considered special 
isosceles triangles, but this is not reflected in 
most textbooks. Isosceles triangles have no 
property that an equilateral triangle does not 
have  
(See Figure 4). This change however is reflected 
in some resources available on the web, e.g. 
https://www.cut-the-knot.org/triangle/Triangles.
shtml which includes both cases.

Figure 4

Another interesting case arises w.r.t. rectangles 
and isosceles trapeziums. Rectangles satisfy all 
properties of an isosceles trapezium. So, rectangle 
is the intersection of isosceles trapezium and 
parallelogram (Figure 5). However, the popular 
definition of an isosceles trapezium creates a 
barrier in allowing rectangles to join the set. An 
isosceles trapezium has a pair of parallel sides 
and a pair of equal sides. This comes directly 
from the name ‘isosceles’ meaning same sides. 
Now, if the parallel sides are equal, it becomes 
a parallelogram. So, the standard definition 
specifies that the non-parallel sides to be equal. 
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But the non-parallel-ness of the remaining sides 
excludes rectangles (Figure 6). So, a possible 
way out is to say, a quad with one pair of 
parallel sides with the other pair having equal 
length is an isosceles trapezium. This allows a 
rectangle to be an isosceles trapezium. But it 
also leads to one more problem. This alternate 
definition also allows a parallelogram to be 
an isosceles trapezium which is not possible. 
Isosceles trapeziums have line symmetry which 
a parallelogram need not have. So, there is a 
problem if we consider only sides:

Figure 5

Figure 6

Desirable Non-desirable

Other sides  
are non-parallel

Excludes 
parallelograms

Excludes 
rectangles

Other sides  
can be parallel

Includes 
rectangles

Includes general 
parallelograms 

Parallel sides 
are unequal

Excludes 
parallelograms

Excludes 
rectangles

Parallel sides 
can be equal

Includes 
rectangles

Includes general 
parallelograms

So, the definitions must go beyond sides and 
include some statement about the angles. There 
are several ways to go about this since there are 
several equivalent conditions:
1.  Trapezium with two pairs of equal adjacent 

angles
2. Trapezium with opposite angles 

supplementary ⇔ a cyclic trapezium
3.  Trapezium with a line symmetry 
4. Trapezium with equal diagonals

Each of these includes rectangles but excludes 
general parallelograms. In the first definition, 
it is important to mention two pairs since it 
is possible for a trapezium to have exactly two 
right angles which must be adjacent. So, just one 
pair of equal adjacent angles may not ensure an 
isosceles trapezium. An alternative definition for 
1 can be:
5.  Trapezium with equal angles adjacent to any 

of the parallel sides

This excludes the right-angle pair possibility 
and may be more convenient in terms of 
construction and pre-requisites compared to 2, 
3 and 4. Also it describes the quad in terms of 
its sides and angles from which properties (like 
2, 3 and 4) can be derived, rather than make 
the derivable property a definition. One may 
need to understand cyclic quad to grasp the 
second part of 2 and one must be familiar with 
the properties of a shape with line symmetry. 
Whereas, 5 does not require anything beyond 
sides and angles. If the measure of the equal 
angles and their common side is given, one 
can draw the unique isosceles trapezium with 
these specifications. It involves an ASA type 
construction and drawing a parallel line. One 
can thus construct an isosceles trapezium with 
this definition and then explore its properties. 
However, it may be more difficult, but not 
impossible, to construct an isosceles trapezium 
using 2 or 3. In fact, there is a definition 
similar to 5 on the web: “An isosceles trapezoid 
(called an isosceles trapezium by the British; 
Bronshtein and Semendyayev 1997, p. 174) 
is trapezoid in which the base angles are equal 
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and therefore the left and right side lengths are 
also equal.” [http://mathworld.wolfram.com/
IsoscelesTrapezoid.html]

We end this with the following statement 
and urge readers to prove it or provide a 
counterexample: Any quad with line symmetry is 
a kite or an isosceles trapezium.

PRIME NUMBER GAMES
Prime numbers are an eternal source of fascination for mathematicians, amateurs or otherwise. They offer 
tantalising glimpses of pattern and symmetry, but these patterns are often elusive and misleading, as many math 
explorers have found the hard way!

The natural thing to do with prime numbers is to multiply them with each other, but mathematicians have also 
explored what happens when you add prime numbers to one another. There is a famous unsolved problem in this 
connection, known as Goldbach’s conjecture, which states that it is possible to write every even number exceeding 
2 as a sum of two prime numbers. For example, 20 = 17 + 3, 30 =17 + 13, 40 = 29 + 11, and so on. This may seem 
simple to prove – but it has resisted the best efforts of a large number of mathematicians over the past two 
centuries! (That’s why it is called a conjecture.)

We display below some prime number relations found by two budding mathematicians, Harshul and Shresht. 
Who knows what such number play may lead to? We don’t know, and we will not try to guess.

And so on.

Contributed by Harshul Vikam urvi.vikam@gmail.com and Shresht Siddharth Bhat savitharth@gmail.

And:
1 × (2 + 3) = 5,

(3 + 7 × 1) ÷ 5 = 2,
(5 – 3) × 1 + 2 = 11 – 7,

(13 – 7) × (3 – 2 × 1) = 11 – 5,
(17 + 13) × 2 – (7 – 3 + 1) =11 × 5,

(2 × 3 × 5) + 11 + 7 + 1 = 19 + 17 + 13,
23 + 19 + 17 + 13 = {(11 × 7) – 5} × (3 – 2 × 1),

29 + 23 + 19 + 17 + 13 = {11 × (5 + 2)} + {(7 + 1) × 3},
31 + 29 + ⋯ + 13 = {(7 + 5) × 11} × (3 – 2 × 1),
37 + 31 + ⋯ + 13 = (11 × 7 × 2) + (5 × 3 × 1),

41 + 37 + ⋯ + 17 = 11 × (13 + 2) + (7 × 5) – (3 × 1);

(5 – 3) = (2 × 1),
(7 – 5) = (3 – 2) + 1,

(11 – 7) × (3 – 2) = (5 – 1),
(7 – 5) + (3 – 2) = (13 – 11) + 1,

(11 – 7) × [(5 – 3) – (2 – 1)] = (17 – 13),
(7 – 5) × [(3 – 2) + 1] = (19 – 17) + (13 – 11),

(11 – 7) × (5 – 3) × (2 – 1) – (17 – 13) + (23 – 19),
(29 – 23) + 1 = (19 – 17) + (13 – 11) + (7 – 5) + (3 – 2),

[(31 – 29) + (11 – 7) + (5 – 3)] × (2 – 1) = (23 – 19) + (17-13),
(37 – 31) + (19 – 17) + (7 – 5) = (29 – 23) + (13 – 11) + (3 – 2) + 1,

(41 – 37) × [(23 – 19) – (31 – 29)] = {(17 – 13)[(11 – 7) – (5 – 3)]} × (2 – 1);


