
53Azim Premji University At Right Angles, November 2020

A Cellular Automata
Model for Predicting
Crowd Movement during
Evacuation

Introduction
We usually go for outings to shopping malls, cinema halls, and
amusement parks or go to our respective workplaces, such as offices
or schools. But have you ever paid attention to that small evacuation
map hanging on the side of the corridor of your building? We usually
walk past these and take these for granted. But what if an actual
earthquake or some other disaster were to happen? How would you
manage the situation then?

Many public places attract large crowds of people and are susceptible
to stampedes and other disasters. During a panic situation, say an
earthquake, if people are inside a building, they would generally
move in a random fashion causing crowding and clogging at exit
points. Often an evacuation system exists, but it isn’t the best option.
Hence, having an effective evacuation plan is extremely crucial in
such situations. Mathematical modeling can help us develop more
efficient evacuation plans.

Researchers have been developing mathematical models for
pedestrian movements and evacuation systems. Many of these
models are based on differential equations [2]. Such models are
highly complex and often difficult to interpret and understand.
Numerical methods are used to solve such models and these may be
computationally expensive and time consuming.

In this article we will describe a project in which the concept of
cellular automata (CA) has been used to develop a simulation model

Keywords: modeling, cellular automata, simulation, math applications

ANMOL SINGH DHALIWAL, ANTARA GHOSH, NAMAN MANSUKHANI

H
ig

h
er

 S
ec

o
n

d
ar

y
Te

ch
Sp

ac
e

All the wonders of
the universe can in
effect be captured
by simple rules,
yet…there can be
no way to know all
the consequences of
these rules, except,
in effect, just to
watch and see how
they unfold.

– Stephen Wolfram

54 Azim Premji University At Right Angles, November 2020

for an evacuation system. Cellular automata is
a mathematical tool which can govern complex
systems through simple rules. It has applications
in traffic flow modeling, structural design, neural
networks, forest fires, ant colony activity, crystal
growth and in many other fields [1]. Cellular
automaton models can be one, two or even three
dimensional. They can be generated and explored
through simulation and their outputs are very
conducive for exploring real life crisis situations.

The aim of the project was to
1. Apply the two dimensional Cellular Automata

to simulate the movement of people in a
crowded room, hall or corridor.

2. Develop a Python driven CA model to
simulate crowd movement in times of a crisis.

Some mathematical preliminaries
In this section we shall explore some basic
questions related to cellular automata. To begin
with, what is a cellular automaton?

A cellular automaton (CA) is a collection of
cells on a grid of a specified shape that evolves
through discrete time steps according to a set
of rules based on the state (or color) of the
neighbouring cells.
• Each cell has a state – dead or alive. Pictorially

the dead cells can be represented by white
color and the live cells are coloured black.
They can also be represented using 0s and
1s, where 0 represents a dead cell and 1
represents a live cell.

• Each cell has a neighbourhood. A
neighbourhood of a given cell is a set of cells
which are adjacent to it.

• Every CA must have a certain set of rules
based on which it evolves through various
time steps. These rules are referred to as the
defining rules of a CA.

One-dimensional cellular automata
In a one-dimensional cellular automaton (also
referred to as an elementary cellular automaton
or ECA), the state of a cell can be either 0 or 1
(dead or alive). Such automata are represented
on a linear grid of cells, in which each cell has
two neighbours (the cell to its left and the
one to its right). Each row of the automata
represents a different generation or evolution in
a different time step. A more detailed account
of ECA may be found in the article titled The
Elementary Cellular Automata: A journey into the
computational world [3] published in the March
2018 issue of At Right Angles.

If we consider any three adjacent cells of a linear
grid, each of these can be coloured either black or
white. Hence, there are a total of 2 x 2 x 2 = 8
possibilities of colouring a set of three adjacent
cells. See Figure 1, in which the top rows (of three
cells each) represent these eight combinations.
Further, each of these combinations can be
assigned 0 or 1 (as indicated in Figure 1). Hence,
the total number of defining rules in a one-
dimensional CA is 28 = 256 possibilities. These
possibilities or ECA combinations, are numbered
from 0 to 255. Each ECA combination is
therefore identified by its rule number (from 0
to 255). They can also be represented as binary
numbers. For example, Figure 1 represents the
defining rule for ECA rule 30 which also has the
binary representation 00011110.

The defining rule 00011110 may be treated as
a binary number whose decimal representation
(namely, 30) is obtained as follows

0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22
+ 1 × 21 + 0 × 20 = 30.

The evolution of a one-dimensional CA starts
with an initial state (generation 0), and evolves
according to one of the 256 ECA rules. Different

Figure 1. Defining rule for ECA rule 30.

55Azim Premji University At Right Angles, November 2020

rules generate different patterns. For example,
rule 30 leads to a chaotic pattern, and rule 126
leads to a Sierpinski triangle like pattern. Figure
2 shows the first 20 generations (where each row
of the grid represents a different generation) of
the ECA rules 30 and 126 respectively.

Two-dimensional Cellular Automata
Like one-dimensional CA, the state of a cell in
two-dimensional CA is also either dead or alive.
A more detailed analysis of two – dimensional
cellular automata may be found in [4].
However, a two-dimensional automaton evolves
on a grid of square cells. One way to visualise
a two-dimensional cellular automaton is to
imagine an infinite sheet of squared paper and
a set of rules according to which the cells evolve
from one generation to the next. Each cell in a
grid has neighbourhood cells which are the cells
adjacent to it.

The two types of neighbourhoods widely
used in two-dimensional CA are (a) the Von
Neumann neighbourhood, and (b) the Moore
neighbourhood. As shown in Figure 3, the

Von Neumann neighbourhood of a given cell
comprises the cells adjacent to it and positioned
just above, below, to the left and to the right.
In the case of the Moore neighbourhood, all the
eight cells surrounding a given cell comprise the
neighbourhood.

The state of the center cell in the next
generation depends on all its neighbourhood
cells in the current one. If we take the Moore
neighbourhood, each of the nine cells can
be either black or white. Hence, the total
combinations would be 29 = 512 combinations.
The central cell of each of these 512 possibilities
can change in any way in the next time step
according to defined rules. This leads to a total of
2512 possibilities which is a very huge number!

Game of Life
One of the very well-known and popular two
dimensional cellular automata is the Game of
Life. It is a game based on cellular automata that
was invented by the British mathematician John
Horton Conway [4] in the1960s. It is a one-
player game, that is, only the initial configuration
of cells is required and the game continues
according to certain rules.

The rules of the Game of Life are as follows:
1. Any live cell with less than two live

neighbours dies (due to lack of resources).
2. Any live cell with two or three live neighbours

lives on to the next generation.

Rule 30 Rule 126

Figure 2. Evolution of ECA rule 30 and rule 126 over 15 time steps starting
with a single live cell in generation 0 (indicated by the topmost row).

Figure 3. Two dimensional cellular
automata neighbourhoods

56 Azim Premji University At Right Angles, November 2020

3. Any live cell with more than three live
neighbours dies (due to excess resources and
overcrowding).

4. Any dead cell with exactly three live neighbours
becomes a live cell (by reproduction).

This implies that any initial configuration of cells
(referred to as generation 0) will be subjected
to the above four rules and will lead to a new
configuration, that is, generation 1. Generation
1 will further undergo the rules (1 to 4) and so
on. Interesting patterns are seen to emerge after
a few generations. Some common pattern types
include: still lifes, which do not change from
one generation to the next; oscillators, which
return to their initial state after a finite number
of generations; and spaceships, which translate
themselves across the grid. A more detailed
account is available in [5].

Figure 4 illustrates one example of each type.
Pattern (a) represents a still life called beehive,
(b) represents an oscillator called blinker
which oscillates between the two states and (c)
represents a glider. The reader is urged to play the
game online at https://playgameoflife.com/

(a) Beehive (still life) (b) Blinker (oscillator)

 (c) Glider (spaceship)

Figure 4. Examples of patterns emerging
from John Conway’s Game of Life

A Two-dimensional Cellular Automata model
to simulate the behaviour of people during
evacuation
Let us imagine that the floor of a hall is a
rectangular grid consisting of small square cells
(Figure 5(a)). Each person in the hall occupies
exactly one cell in a given time step. Thus a cell
is live if it is occupied by a person and is dead
if it is unoccupied (Figure 5 (b)). The state or
configuration of the system at a given time step is
represented by the black and white cells.

 Figure 5(a). A grid of square cells
representing the floor of a hall

 Figure 5(b). Black cells represent
people standing inside the hall

The eight cells surrounding a given cell will be
referred to as its neighbours (similar to Moore
neighbourhood). In the next time step a person
can move to any one of its 8 neighbouring cells.

Figure 6. The black cell represents the central
cell and the grey cells are its neighbours

57Azim Premji University At Right Angles, November 2020

Movement Rules
The rules determining the movement of the
people occupying the room are as follows:

1. A person can move only one cell at a
time and it can move only to its defined
neighbourhood cells.

2. Logically, a person would want to take the
shortest route to the exit. So, (s)he will move
to one of its neighbourhood cells which is
closest to the exit. If an obstacle is present,
(s)he will move to the neighbourhood cell
second closest to the exit and so on.

3. A person cannot move in the direction
opposite to the exit. In case his/her
movement is completely restricted by other
neighbouring cells, (s)he does not move.

4. If there is a conflict between two people
for one cell, the one closer to the exit will
prevail, that is, will get to move.

Figure 7. The state or configuration
of the room at time t=0

In Figure 7 we have an 8 x 6 sized grid
(representing a room) with the exit positioned
at the origin. The black cells represent cells
occupied by people at time t = 0.

Each cell has specific coordinates assigned to it.
Figure 8 represents the configuration at time
t = 1, after applying the movement rules 1 to 4.

 Figure 8. The configuration of the hall at time t=1

Movement rules (such as rule 1 to 4 mentioned
above) can be used to simulate the movement
behaviour of people during an evacuation.

The Python-driven CA Model for a single room
The goal of this model was to simulate the
movement of people exiting a single room. The
model was simulated using the Python mode
for Processing, an open-source graphics library.
The model is based on an m x n grid, with the
exit at the cell corresponding to the mth row and
the nth column (the bottom right corner). The
model takes in another argument x, the number
of people in the room.

Occupied and empty cells are represented by
black and white colours respectively. For each
iteration of the model, x random positions are
coloured black at t = 0. The configuration of the
grid at t = n is a function of the configuration at
t = n – 1. In order to determine the configuration
at the next step, the cells adopt a ‘greedy’
strategy. Each cell tries to move along the
diagonal if possible; if this is not possible, then
the cell moves randomly either to the bottom or
to the right, depending on whether the desired
cell is empty. For each iteration, the cell at the
front gets the preference in movement, as is
seen in real-world situations as well. Figure 9
illustrates the simulation where people are exiting
a room (represented by an 8 by 8 grid enclosed
within the red square) where the exit is located in
the bottom right corner of the square.

The algorithmic complexity in order to determine
the configuration at the next time-step is O(mn),
where m = number of rows and n = number of
columns.

The Python driven CA Model for a multi-
room floor evacuation
The goal of the second simulation was to extend
the first one and study floor-based evacuations
rather than room-based ones. It was developed
purely in Python using industry-standard addon
libraries like ‘numpy’ and ‘matplotlib’, and the
inbuilt libraries ‘time’ and ‘random’. Typically

58 Azim Premji University At Right Angles, November 2020

such problems would require the use of graph
theory to find the shortest path for each evacuee.
However, our model simplifies this by dividing
the coordinate frame into unit cells, and using
2D Euclidean distance measurements between
cells, binary matrices, and sorting algorithms to
generate the movements at each time step.

Simple shifting of origin concepts are used to
convert evacuee positions in each room to global
coordinates for the floor, and a ‘global’ binary
matrix is maintained to keep track of occupied
cells for the entire floor.

In this model [x, y] denotes a matrix index,
(x, y) denotes a 2D coordinate, and {cx, cy}
denotes a movement pair of cx units horizontally,
and cy units vertically.

Any closed space (a room or a corridor) is defined
using (a) a bottom left coordinate, and (b) its size
as a width and height pair. An example definition
would be a bottom left coordinate of (1, 1) and a
size of (20, 20), indicating a room/corridor that
starts at (1, 1) in the global reference frame, and has
a size of 20 x 20. Thus, it would be a square having
a diagonal between the points (1, 1) and (21, 21).

Figures 10 and 11 are outputs of the Python
simulation. Figure 10 shows three rooms of size
5 by 5 which open into a corridor while Figure
11 shows three rooms of varying sizes along
with a corridor. The boundaries of the rooms
and the corridor are indicated in red. Instead
of narrowing down the frame to the smallest

bounding box that would enclose all rooms
and the corridor, five rows and five columns,
respectively, have been padded around to
improve aesthetic appeal.

The exits, represented by blue coloured lines, are
also defined as coordinate pairs, in the frame of
reference of each room, and then for the corridor
as well. Exits of different lengths can be defined
just by declaring their component edges of unit
length. Rooms and corridors must have exactly
one common edge, and the exit must lie on that
edge. This is ensured while defining the model.

Steps of simulation
1. The number of evacuees in each room can

be defined, and their locations are generated
randomly without any overlaps. The locations
are returned as coordinate pairs, local to
each room. These occupied cell locations are
assigned a value of 1 in the binary matrix,
with empty cells having value 0.

2. A separate ‘labels’ array is also maintained for
assigning numbers to each cell in each room
based on order of random generation while in
the room. The label for a cell is subsequently
prefixed with a specific letter of the alphabet
as soon as it exits the room. For example, in
the frame of reference of room ‘a’, cell 1 refers
to the first randomly generated coordinate
cell. While it is in room ‘a’, it will remain as
‘1’, and as soon as it exits the room, it will
become ‘a1’ in the corridor.

Figure 9: Model with m = n = 8 and k = 10 at time steps t = 0, t = 1 and t = 2

t = 0 t = 1 t = 2

59Azim Premji University At Right Angles, November 2020

• For example, visualise a unit square based
grid, with a movement of [2, 2] → [1, 3]
in a 3 x 3 room having bottom left corner
as (5, 5). This will result in the transfer of
colour black from the cell with bottom left
corner as (6, 6) to the cell with bottom left
corner as (7, 7) in the global frame. The
underlying concept is just that matrix row
indices increase in a top - bottom manner,
whereas Cartesian y coordinates increase in
a bottom - top manner, with row indices in
matrices being indicative of the y coordinate,
and column indices being indicative of the x
coordinate.

The algorithm
The algorithm starts by calculating the euclidean
distance between the center of each exit and
the corresponding cell location for each cell. It
has the capability of simulating two kinds of
scenarios. Firstly, where each cell independently
moves to its optimal cell in every timestep i.e.
directly moving to the one that will take it closest
to the exit (this may result in many collisions),
and secondly, where each cell moves to a distinct
cell depending on its closeness to the exit,
factoring in neighbour awareness, which means
this will result in no collisions.

In both scenarios, in every timestep, the cell may
only move to any cell in its Moore neighbourhood
(scenario 1), or additionally also have the
capability of staying at its position (scenario 2).
To exit, the cell must reach the unit cell having a
common edge with the corridor and lying inside
the particular room.

In the first scenario (Figure 10), a cell’s final
position is simply assigned as the one that will
take it closest to the exit. The best step of the
cell is therefore just a movement of +1, -1 or 0
in each of the two x and y directions, depending
on the location of the exit. However, in this
scenario, since it is effectively moving blindly
i.e. simulating panic, it must move at least one
unit in every timestep, so a {0, 0} i.e. static (no
movement) step is not allowed.

In the following parts, when we say that an exit is
located at a matrix index, we imply that that cell
will have the exit(s) as its edge(s).

Consider an exit at [2, 5] in a room matrix. For
an evacuee located at [5, 4], the best movement
path will be [5, 4] → [4, 5] {-1, +1} → [3, 5]
{-1, 0} → [2, 5] {-1, 0} → exit. However, if
there is another cell located at [5, 5] in the first
time step, it will also strive to move to [4, 5],
and in this scenario, a collision will occur. The
number of collisions are counted by determining
the number of cells that have the same final
coordinates at each time step, and then dividing
by 2. Each collision has been given a one second
penalty to simulate the real-world delay it causes,
and in the plots, the labels for those colliding
cells are overlaid on top of each other to also give
a visual effect. The simulation continues until the
last cell exits the corridor.

In the second scenario (Figure 11), the final
positions are calculated for each cell in a
hierarchical format depending on their closeness
to the exit. This means that a cell closer to the
exit will have the chance to move first and
choose its preferred coordinate before the others.
Once it chooses the final location, that location
is invalidated for the other cells, implying an
absolute collision-free ideal evacuation. If two
cells are equidistant from the exit, e.g. lying in
the left and right upper diagonals of the Moore
neighbourhood of the target exit cell, the one
having lower label value will get to move first.
This also means that there is a possibility for a
cell to remain at its current position in a timestep
if all of its preferred locations have already been
occupied by the cells that moved before it.

Screenshots of simulations
Scenario 1: Note the overlaps (in Figure 10 (a);
an overlap can be seen in the lower room ‘b’, two
units directly below the exit and in Figure 10 (b)
one overlap can be seen in the cell lying in the
middle row of the corridor just two units away
from the long blue line center). The overlaps
depict collisions and hence delays.

60 Azim Premji University At Right Angles, November 2020

Figure 10(a). Scenario 1 simulation at t = 3 seconds

Figure 10(b). Scenario 1 simulation at t = 19 seconds

61Azim Premji University At Right Angles, November 2020

Scenario 2: A perfect orderly movement of the cells is visible. Also note the different room sizes and exit
locations, showing the versatility of the algorithm.

Fig 11(a): Scenario 2 simulation at t = 7 seconds

Figure 11(b). Scenario 2 simulation at t = 17 seconds

Supported by intuition, it was observed that
the evacuation time for scenario 2 simulations
was always less than scenario 1 simulations, for
the same initial configuration of cells. Smaller
rooms would have greater collisions, and thus the
difference between the evacuation times between
the two scenarios was more in those cases.

Conclusion
In this article we have tried to show that
Mathematics and Computer Science can prove to
be the ideal tools for studying phenomena such
as evacuation during a crisis situation. Initially,
we thought of using one dimensional ECA to
model crowd behaviour in corridors but it proved

62 Azim Premji University At Right Angles, November 2020

to be unrealistic and less efficient. The use of two
dimensional CA was a necessity in this case.

The Python implementations verified that
panic caused by random movements of people
inevitably lead to longer evacuation times and
can be harmful in the long run. The proposed
model of rule-based evacuations with neighbour
awareness is an example of a robust model that
will lead to ideal, collision-free evacuations with
least possibility for injuries and loss of life.

This project can be extended to simulation of
people exiting a hall with two or more exits and
identifying an ideal path for evacuation. We also

plan to increase the complexity of the model by
studying bidirectional crowd movements (such
as at a subway or a metro station) and finding an
efficient means of crowd management.

Finally, we would like to thank Mr. Mukesh
Kumar, Head of Computer Science Department,
Delhi Public School, R K Puram, for his support
and guidance in developing the algorithms
and Python implementations. We would also
like to acknowledge Mr. Anil Kathuria,
Head, Department of Mathematics, and our
teachers Ms. Tandeep Kaur, Ms. Shalini Monga
and Ms. Nagalakshmi for their encouragement
and support.

References

[1] Gong, Yimin. (2017). A survey on the modeling and applications of cellular automata theory, IOP Conference series: Materials
science and engineering 242 (2017) 012106 .

[2] Sarmady, S., Haron, F., Talib, Abdullah Z., (2014). Simulation of pedestrian movements using fine grid cellular automata model.
Retrieved from https://arxiv.org/pdf/1406.3567.pdf

[3] Ghosh, J.B & Adsule, R. (2018). The Elementary Cellular Automata: A journey into the computational world, At Right Angles,
Volume 7 (1), pp. 95-101.

[4] Huxley, T.H. Two dimensional automata, retrieved from http://psoup.math.wisc.edu/491/Schiff_4.pdf

[5] Conway’s game of life retrieved from https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

The authors are students of class 12. Anmol Singh Dhaliwal has three published articles related to using Wolfram Mathematica in robotics
and English language teaching to underprivileged children. His interests are coding, robotics and mathematical modelling. Antara Ghosh
has interests varying from dancing and playing basketball to physics and mathematics and solving real life problems. Naman Mansukhani
enjoys spending time on websites like Codeforces and Brilliant and is interested in machine learning and neural networks. He enjoys
learning about other cultures and their languages.

Anmol Singh DhAliwAl

anmolsinghdhaliwal03@gmail.com
AntArA ghoSh

antaraghosh1966@gmail.com
nAmAn mAnSukhAni

naman.mansukh@gmail.com

