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A Cellular Automata 
Model for Predicting 
Crowd Movement during 
Evacuation

Introduction
We usually go for outings to shopping malls, cinema halls, and 
amusement parks or go to our respective workplaces, such as offices 
or schools. But have you ever paid attention to that small evacuation 
map hanging on the side of the corridor of your building? We usually 
walk past these and take these for granted. But what if an actual 
earthquake or some other disaster were to happen? How would you 
manage the situation then?

Many public places attract large crowds of people and are susceptible 
to stampedes and other disasters. During a panic situation, say an 
earthquake, if people are inside a building, they would generally 
move in a random fashion causing crowding and clogging at exit 
points. Often an evacuation system exists, but it isn’t the best option. 
Hence, having an effective evacuation plan is extremely crucial in 
such situations. Mathematical modeling can help us develop more 
efficient evacuation plans.

Researchers have been developing mathematical models for 
pedestrian movements and evacuation systems. Many of these 
models are based on differential equations [2]. Such models are 
highly complex and often difficult to interpret and understand. 
Numerical methods are used to solve such models and these may be 
computationally expensive and time consuming.

In this article we will describe a project in which the concept of 
cellular automata (CA) has been used to develop a simulation model 
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All the wonders of 
the universe can in 
effect be captured 
by simple rules, 
yet…there can be 
no way to know all 
the consequences of 
these rules, except, 
in effect, just to 
watch and see how 
they unfold.

– Stephen Wolfram
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for an evacuation system. Cellular automata is 
a mathematical tool which can govern complex 
systems through simple rules. It has applications 
in traffic flow modeling, structural design, neural 
networks, forest fires, ant colony activity, crystal 
growth and in many other fields [1]. Cellular 
automaton models can be one, two or even three 
dimensional. They can be generated and explored 
through simulation and their outputs are very 
conducive for exploring real life crisis situations.

The aim of the project was to
1. Apply the two dimensional Cellular Automata 

to simulate the movement of people in a 
crowded room, hall or corridor.

2. Develop a Python driven CA model to 
simulate crowd movement in times of a crisis.

Some mathematical preliminaries
In this section we shall explore some basic 
questions related to cellular automata. To begin 
with, what is a cellular automaton? 

A cellular automaton (CA) is a collection of 
cells on a grid of a specified shape that evolves 
through discrete time steps according to a set 
of rules based on the state (or color) of the 
neighbouring cells.
• Each cell has a state – dead or alive. Pictorially 

the dead cells can be represented by white 
color and the live cells are coloured black. 
They can also be represented using 0s and 
1s, where 0 represents a dead cell and 1 
represents a live cell.

• Each cell has a neighbourhood. A 
neighbourhood of a given cell is a set of cells 
which are adjacent to it.

• Every CA must have a certain set of rules 
based on which it evolves through various 
time steps. These rules are referred to as the 
defining rules of a CA.

One-dimensional cellular automata
In a one-dimensional cellular automaton (also 
referred to as an elementary cellular automaton 
or ECA), the state of a cell can be either 0 or 1 
(dead or alive). Such automata are represented 
on a linear grid of cells, in which each cell has 
two neighbours (the cell to its left and the 
one to its right). Each row of the automata 
represents a different generation or evolution in 
a different time step. A more detailed account 
of ECA may be found in the article titled The 
Elementary Cellular Automata: A journey into the 
computational world [3] published in the March 
2018 issue of At Right Angles.

If we consider any three adjacent cells of a linear 
grid, each of these can be coloured either black or 
white. Hence, there are a total of 2 x 2 x 2 = 8 
possibilities of colouring a set of three adjacent 
cells. See Figure 1, in which the top rows (of three 
cells each) represent these eight combinations. 
Further, each of these combinations can be 
assigned 0 or 1 (as indicated in Figure 1). Hence, 
the total number of defining rules in a one-
dimensional CA is 28 = 256 possibilities. These 
possibilities or ECA combinations, are numbered 
from 0 to 255. Each ECA combination is 
therefore identified by its rule number (from 0 
to 255). They can also be represented as binary 
numbers. For example, Figure 1 represents the 
defining rule for ECA rule 30 which also has the 
binary representation 00011110.

The defining rule 00011110 may be treated as 
a binary number whose decimal representation 
(namely, 30) is obtained as follows

0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 
+ 1 × 21 + 0 × 20 = 30.

The evolution of a one-dimensional CA starts 
with an initial state (generation 0), and evolves 
according to one of the 256 ECA rules. Different 

Figure 1. Defining rule for ECA rule 30.
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rules generate different patterns. For example, 
rule 30 leads to a chaotic pattern, and rule 126 
leads to a Sierpinski triangle like pattern. Figure 
2 shows the first 20 generations (where each row 
of the grid represents a different generation) of 
the ECA rules 30 and 126 respectively. 

Two-dimensional Cellular Automata
Like one-dimensional CA, the state of a cell in 
two-dimensional CA is also either dead or alive. 
A more detailed analysis of two – dimensional 
cellular automata may be found in [4]. 
However, a two-dimensional automaton evolves 
on a grid of square cells. One way to visualise 
a two-dimensional cellular automaton is to 
imagine an infinite sheet of squared paper and 
a set of rules according to which the cells evolve 
from one generation to the next. Each cell in a 
grid has neighbourhood cells which are the cells 
adjacent to it.

The two types of neighbourhoods widely 
used in two-dimensional CA are (a) the Von 
Neumann neighbourhood, and (b) the Moore 
neighbourhood. As shown in Figure 3, the 

Von Neumann neighbourhood of a given cell 
comprises the cells adjacent to it and positioned 
just above, below, to the left and to the right. 
In the case of the Moore neighbourhood, all the 
eight cells surrounding a given cell comprise the 
neighbourhood.

The state of the center cell in the next 
generation depends on all its neighbourhood 
cells in the current one. If we take the Moore 
neighbourhood, each of the nine cells can 
be either black or white. Hence, the total 
combinations would be 29 = 512 combinations. 
The central cell of each of these 512 possibilities 
can change in any way in the next time step 
according to defined rules. This leads to a total of 
2512 possibilities which is a very huge number!

Game of Life
One of the very well-known and popular two 
dimensional cellular automata is the Game of 
Life. It is a game based on cellular automata that 
was invented by the British mathematician John 
Horton Conway [4] in the1960s. It is a one-
player game, that is, only the initial configuration 
of cells is required and the game continues 
according to certain rules. 

The rules of the Game of Life are as follows: 
1. Any live cell with less than two live 

neighbours dies (due to lack of resources).
2. Any live cell with two or three live neighbours 

lives on to the next generation.

Rule 30 Rule 126

Figure 2. Evolution of ECA rule 30 and rule 126 over 15 time steps starting 
with a single live cell in generation 0 (indicated by the topmost row).

Figure 3. Two dimensional cellular  
automata neighbourhoods
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3. Any live cell with more than three live 
neighbours dies (due to excess resources and 
overcrowding).

4. Any dead cell with exactly three live neighbours 
becomes a live cell (by reproduction).

This implies that any initial configuration of cells 
(referred to as generation 0) will be subjected 
to the above four rules and will lead to a new 
configuration, that is, generation 1. Generation 
1 will further undergo the rules (1 to 4) and so 
on. Interesting patterns are seen to emerge after 
a few generations. Some common pattern types 
include: still lifes, which do not change from 
one generation to the next; oscillators, which 
return to their initial state after a finite number 
of generations; and spaceships, which translate 
themselves across the grid. A more detailed 
account is available in [5].

Figure 4 illustrates one example of each type. 
Pattern (a) represents a still life called beehive, 
(b) represents an oscillator called blinker 
which oscillates between the two states and (c) 
represents a glider. The reader is urged to play the 
game online at https://playgameoflife.com/

(a) Beehive (still life)          (b) Blinker (oscillator) 

  (c) Glider (spaceship)

Figure 4. Examples of patterns emerging  
from John Conway’s Game of Life

A Two-dimensional Cellular Automata model 
to simulate the behaviour of people during 
evacuation
Let us imagine that the floor of a hall is a 
rectangular grid consisting of small square cells 
(Figure 5(a)). Each person in the hall occupies 
exactly one cell in a given time step. Thus a cell 
is live if it is occupied by a person and is dead 
if it is unoccupied (Figure 5 (b)). The state or 
configuration of the system at a given time step is 
represented by the black and white cells.

  Figure 5(a). A grid of square cells  
representing the floor of a hall

 Figure 5(b). Black cells represent  
people standing inside the hall

The eight cells surrounding a given cell will be 
referred to as its neighbours (similar to Moore 
neighbourhood). In the next time step a person 
can move to any one of its 8 neighbouring cells.

   

Figure 6. The black cell represents the central  
cell and the grey cells are its neighbours
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Movement Rules
The rules determining the movement of the 
people occupying the room are as follows:

1. A person can move only one cell at a 
time and it can move only to its defined 
neighbourhood cells.

2. Logically, a person would want to take the 
shortest route to the exit. So, (s)he will move 
to one of its neighbourhood cells which is 
closest to the exit. If an obstacle is present, 
(s)he will move to the neighbourhood cell 
second closest to the exit and so on.

3.  A person cannot move in the direction 
opposite to the exit. In case his/her 
movement is completely restricted by other 
neighbouring cells, (s)he does not move.

4.  If there is a conflict between two people 
for one cell, the one closer to the exit will 
prevail, that is, will get to move.

Figure 7. The state or configuration  
of the room at time t=0

In Figure 7 we have an 8 x 6 sized grid 
(representing a room) with the exit positioned 
at the origin. The black cells represent cells 
occupied by people at time t = 0.

Each cell has specific coordinates assigned to it. 
Figure 8 represents the configuration at time  
t = 1, after applying the movement rules 1 to 4.

  Figure 8. The configuration of the hall at time t=1

Movement rules (such as rule 1 to 4 mentioned 
above) can be used to simulate the movement 
behaviour of people during an evacuation. 

The Python-driven CA Model for a single room 
The goal of this model was to simulate the 
movement of people exiting a single room. The 
model was simulated using the Python mode 
for Processing, an open-source graphics library. 
The model is based on an m x n grid, with the 
exit at the cell corresponding to the mth row and 
the nth column (the bottom right corner). The 
model takes in another argument x, the number 
of people in the room. 

Occupied and empty cells are represented by 
black and white colours respectively. For each 
iteration of the model, x random positions are 
coloured black at t = 0. The configuration of the 
grid at t = n is a function of the configuration at  
t = n – 1. In order to determine the configuration 
at the next step, the cells adopt a ‘greedy’ 
strategy. Each cell tries to move along the 
diagonal if possible; if this is not possible, then 
the cell moves randomly either to the bottom or 
to the right, depending on whether the desired 
cell is empty. For each iteration, the cell at the 
front gets the preference in movement, as is 
seen in real-world situations as well. Figure 9 
illustrates the simulation where people are exiting 
a room (represented by an 8 by 8 grid enclosed 
within the red square) where the exit is located in 
the bottom right corner of the square.

The algorithmic complexity in order to determine 
the configuration at the next time-step is O(mn), 
where m = number of rows and n = number of 
columns.

The Python driven CA Model for a multi-
room floor evacuation 
The goal of the second simulation was to extend 
the first one and study floor-based evacuations 
rather than room-based ones. It was developed 
purely in Python using industry-standard addon 
libraries like ‘numpy’ and ‘matplotlib’, and the 
inbuilt libraries ‘time’ and ‘random’. Typically 
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such problems would require the use of graph 
theory to find the shortest path for each evacuee. 
However, our model simplifies this by dividing 
the coordinate frame into unit cells, and using 
2D Euclidean distance measurements between 
cells, binary matrices, and sorting algorithms to 
generate the movements at each time step.

Simple shifting of origin concepts are used to 
convert evacuee positions in each room to global 
coordinates for the floor, and a ‘global’ binary 
matrix is maintained to keep track of occupied 
cells for the entire floor. 

In this model [x, y] denotes a matrix index,  
(x, y) denotes a 2D coordinate, and {cx, cy} 
denotes a movement pair of cx units horizontally, 
and cy units vertically.

Any closed space (a room or a corridor) is defined 
using (a) a bottom left coordinate, and (b) its size 
as a width and height pair. An example definition 
would be a bottom left coordinate of (1, 1) and a 
size of (20, 20), indicating a room/corridor that 
starts at (1, 1) in the global reference frame, and has 
a size of 20 x 20. Thus, it would be a square having 
a diagonal between the points (1, 1) and (21, 21).

Figures 10 and 11 are outputs of the Python 
simulation. Figure 10 shows three rooms of size 
5 by 5 which open into a corridor while Figure 
11 shows three rooms of varying sizes along 
with a corridor. The boundaries of the rooms 
and the corridor are indicated in red. Instead 
of narrowing down the frame to the smallest 

bounding box that would enclose all rooms 
and the corridor, five rows and five columns, 
respectively, have been padded around to 
improve aesthetic appeal. 

The exits, represented by blue coloured lines, are 
also defined as coordinate pairs, in the frame of 
reference of each room, and then for the corridor 
as well. Exits of different lengths can be defined 
just by declaring their component edges of unit 
length. Rooms and corridors must have exactly 
one common edge, and the exit must lie on that 
edge. This is ensured while defining the model.

Steps of simulation
1. The number of evacuees in each room can 

be defined, and their locations are generated 
randomly without any overlaps. The locations 
are returned as coordinate pairs, local to 
each room. These occupied cell locations are 
assigned a value of 1 in the binary matrix, 
with empty cells having value 0.

2. A separate ‘labels’ array is also maintained for 
assigning numbers to each cell in each room 
based on order of random generation while in 
the room. The label for a cell is subsequently 
prefixed with a specific letter of the alphabet 
as soon as it exits the room. For example, in 
the frame of reference of room ‘a’, cell 1 refers 
to the first randomly generated coordinate 
cell. While it is in room ‘a’, it will remain as 
‘1’, and as soon as it exits the room, it will 
become ‘a1’ in the corridor.

Figure 9: Model with m = n = 8 and k = 10 at time steps t = 0, t = 1 and t = 2

t = 0 t = 1 t = 2
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• For example, visualise a unit square based 
grid, with a movement of [2, 2] → [1, 3] 
in a 3 x 3 room having bottom left corner 
as (5, 5). This will result in the transfer of 
colour black from the cell with bottom left 
corner as (6, 6) to the cell with bottom left 
corner as (7, 7) in the global frame. The 
underlying concept is just that matrix row 
indices increase in a top - bottom manner, 
whereas Cartesian y coordinates increase in 
a bottom - top manner, with row indices in 
matrices being indicative of the y coordinate, 
and column indices being indicative of the x 
coordinate.

The algorithm
The algorithm starts by calculating the euclidean 
distance between the center of each exit and 
the corresponding cell location for each cell. It 
has the capability of simulating two kinds of 
scenarios. Firstly, where each cell independently 
moves to its optimal cell in every timestep i.e. 
directly moving to the one that will take it closest 
to the exit (this may result in many collisions), 
and secondly, where each cell moves to a distinct 
cell depending on its closeness to the exit, 
factoring in neighbour awareness, which means 
this will result in no collisions. 

In both scenarios, in every timestep, the cell may 
only move to any cell in its Moore neighbourhood 
(scenario 1), or additionally also have the 
capability of staying at its position (scenario 2). 
To exit, the cell must reach the unit cell having a 
common edge with the corridor and lying inside 
the particular room.

In the first scenario (Figure 10), a cell’s final 
position is simply assigned as the one that will 
take it closest to the exit. The best step of the 
cell is therefore just a movement of +1, -1 or 0 
in each of the two x and y directions, depending 
on the location of the exit. However, in this 
scenario, since it is effectively moving blindly 
i.e. simulating panic, it must move at least one 
unit in every timestep, so a {0, 0} i.e. static (no 
movement) step is not allowed. 

In the following parts, when we say that an exit is 
located at a matrix index, we imply that that cell 
will have the exit(s) as its edge(s).

Consider an exit at [2, 5] in a room matrix. For 
an evacuee located at [5, 4], the best movement 
path will be [5, 4] → [4, 5] {-1, +1} → [3, 5] 
{-1, 0} → [2, 5] {-1, 0} → exit. However, if 
there is another cell located at [5, 5] in the first 
time step, it will also strive to move to [4, 5], 
and in this scenario, a collision will occur. The 
number of collisions are counted by determining 
the number of cells that have the same final 
coordinates at each time step, and then dividing 
by 2. Each collision has been given a one second 
penalty to simulate the real-world delay it causes, 
and in the plots, the labels for those colliding 
cells are overlaid on top of each other to also give 
a visual effect. The simulation continues until the 
last cell exits the corridor.

In the second scenario (Figure 11), the final 
positions are calculated for each cell in a 
hierarchical format depending on their closeness 
to the exit. This means that a cell closer to the 
exit will have the chance to move first and 
choose its preferred coordinate before the others. 
Once it chooses the final location, that location 
is invalidated for the other cells, implying an 
absolute collision-free ideal evacuation. If two 
cells are equidistant from the exit, e.g. lying in 
the left and right upper diagonals of the Moore 
neighbourhood of the target exit cell, the one 
having lower label value will get to move first. 
This also means that there is a possibility for a 
cell to remain at its current position in a timestep 
if all of its preferred locations have already been 
occupied by the cells that moved before it.

Screenshots of simulations
Scenario 1: Note the overlaps (in Figure 10 (a); 
an overlap can be seen in the lower room ‘b’, two 
units directly below the exit and in Figure 10 (b) 
one overlap can be seen in the cell lying in the 
middle row of the corridor just two units away 
from the long blue line center). The overlaps 
depict collisions and hence delays.
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Figure 10(a). Scenario 1 simulation at t = 3 seconds

 

Figure 10(b). Scenario 1 simulation at t = 19 seconds
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Scenario 2: A perfect orderly movement of the cells is visible. Also note the different room sizes and exit 
locations, showing the versatility of the algorithm.

Fig 11(a): Scenario 2 simulation at t = 7 seconds

Figure 11(b). Scenario 2 simulation at t = 17 seconds

Supported by intuition, it was observed that 
the evacuation time for scenario 2 simulations 
was always less than scenario 1 simulations, for 
the same initial configuration of cells. Smaller 
rooms would have greater collisions, and thus the 
difference between the evacuation times between 
the two scenarios was more in those cases.

Conclusion
In this article we have tried to show that 
Mathematics and Computer Science can prove to 
be the ideal tools for studying phenomena such 
as evacuation during a crisis situation. Initially, 
we thought of using one dimensional ECA to 
model crowd behaviour in corridors but it proved 
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to be unrealistic and less efficient. The use of two 
dimensional CA was a necessity in this case.

The Python implementations verified that 
panic caused by random movements of people 
inevitably lead to longer evacuation times and 
can be harmful in the long run. The proposed 
model of rule-based evacuations with neighbour 
awareness is an example of a robust model that 
will lead to ideal, collision-free evacuations with 
least possibility for injuries and loss of life.

This project can be extended to simulation of 
people exiting a hall with two or more exits and 
identifying an ideal path for evacuation. We also 

plan to increase the complexity of the model by 
studying bidirectional crowd movements (such 
as at a subway or a metro station) and finding an 
efficient means of crowd management.
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