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Problem IX-3-S.1
Consider the quadratic function f(x) = x2 + bx + c defined
on the set of real numbers. Given that the zeros of f are two
distinct prime numbers p and q, and f(p − q) = 6pq,
determine the primes p and q, and the function f.

Problem IX-3-S.2
Find all positive integers a, b, c satisfying the equation

(a+1)4 ·(b+1)4 ·(c+1)4 = (40a+1) ·(40b+1) ·(40c+1).

Problem IX-3-S.3
In a right-angled triangle ABC, point D lies in the interior of
side AC, and point E lies on the extension of hypotenuse AB
beyond B. The second intersection of circles ADE and BCE
(different from E) is F. Show that ∡CFD = 90◦.

Problem IX-3-S.4
The areas of two faces of a cuboid are 40 sq.cm and 56
sq.cm. The length of its main diagonal is

√
138 cm. Given

that, numerically, the total surface area of the cuboid is a
positive integer, determine its volume.

Problem IX-3-S.5
Solve for real x:

4x + 9x + 36x +

√
1
2
− 2x2 = 1.

1

Keywords: Quadratic function, cuboid, divisor, multiple

Problem Editors: PRITHWIJIT DE & SHAILESH SHIRALI

Problems for the 
Senior School



67Azim Premji University At Right Angles, November 2020

Solutions of Problems in Issue-IX-2 (July 2020)

Problem IX-2-S.1
The numbers 4 and 52 share the following features: both are sums of two squares; both exceed another square by
3. Thus:

4 = 02 + 22, 4− 3 = 12;

52 = 42 + 62, 52− 3 = 72.
Show that there are infinitely many numbers that have these two characteristics. [CRUX]

Solution.We need to show that there are infinitely many integer values of k such that k = a2 + b2 and
k = c2 + 3 for non-negative integers a, b, c. Here is a way of generating such values. Let a = 2n,
b = 2n2 − 2, and c = 2n2 − 1 for a positive integer n. Then

a2 + b2 = 4n2 + 4(n2 − 1)2 = 4(n4 − n2 + 1),

c2 + 3 = (2n2 − 1)2 + 3 = 4(n4 − n2 + 1).

Therefore a2 + b2 = c2 + 3 and there is an infinite sequence of numbers

k = 4(n4 − n2 + 1), n = 1, 2, 3, . . .

with these two characteristics. (The numbers 4 and 52 correspond to n = 0 and n = 2 respectively.)

Problem IX-2-S.2
Let f(n) = 25n − 72n − 1. Determine, with proof, the largest integer M such that f(n) is divisible by M for
every positive integer n. [CRUX]

Solution. Observe that

f(n + 1)− f(n) = 24 · 25n − 72 = 24 · (25n − 3) = 24× an even number.

This shows that f(n+ 1)− f(n) is a multiple of 48 for every positive integer n. Since f(1) = −48, which is
a multiple of 48, it follows by the principle of induction that f(n) is a multiple of 48 for every positive
integer n. This shows that M ≥ 48. On the other hand, since f(1) = −48, M cannot exceed 48. Hence
M = 48.

Additional comment. Solutions to this problem came from students in Mangalore. We describe them
briefly here. It is striking to note the variety of solutions for this problem.

Recall that we need to find the largest integer M such that f(n) is divisible by M for every positive integer n.

Praneetha Kalbavi (Class XI): Let n be any positive integer, and let f(n) = Mk and f(n + 1) = Ml for
some positive integers k, l; i.e.,

25n − 72n − 1 = Mk, 25n+1 − 72(n + 1)− 1 = Ml.

We now have:

Ml = 25n+1 − 72(n + 1)− 1 = 25 · 25n − 72n − 72− 1
= 25 · (25n − 72n − 1)− 72n − 73+ 25 · 72n + 25
= 25 · Mk − 1728n − 48.

This implies that M is a divisor of 1728n + 48 for every positive integer n. Since
1728n + 48 = 48(24n + 1), it follows that M = 48.
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Akshar Kumar N (Class XI): First we note f(1) = −48 and f(2) = 480. Hence M ≤ 48. Noting that
48 = 16× 3 and gcd(16, 3) = 1, we shall now prove that 3 | f(n) and 16 | f(n) for every positive
integer n. If we do this, then it will follow that 48 is a divisor of f(n) for every positive integer n,
and hence that M = 48.

To see why 3 | f(n), observe that

f(n) = 25n − 72n − 1 ≡ 1− 0− 1 ≡ 0 (mod 3).

We prove that 16 | f(n) by mathematical induction. Note that the hypothesis is true for n = 1.
Now suppose that 16 | f(m) for some m ≥ 1. Let

f(m) = 25m − 72m − 1 = 16k,

where k is an integer. We now have:

f(m + 1) = 25m+1 − 72(m + 1)− 1 = 25 · 25m − 72(m + 1)− 1
= 25 · (16k + 72m + 1)− 72(m + 1)− 1
= 25 · 16k + 72m · 25+ 25− 72m − 73
= 25 · 16k + 1800m − 72m − 73+ 25 = 25 · 16k + 1728m − 48
= 16(25k + 36− 1),

proving that 16 | f(m + 1). This justifies the claim that the largest integer dividing f(n) for all
n is 48.

Rakshitha (Class XII): Since f(1) = −48, it follows that M ≤ 48. To show that M = 48, we first write

f(n) = 25n − 1− 72n

= 24 · (25n−1 + 25n−2 + · · ·+ 1)− 24 · 3n
= 24 · (25n−1 + 25n−2 + · · ·+ 1− 3n) = 24 · g(n),

where g(n) = 25n−1 + 25n−2 + · · ·+ 1− 3n. Now

g(n) = 25n−1 + 25n−2 + · · ·+ 1− 3n
≡ n − 3n (mod 2) ≡ −2n (mod 2) ≡ 0 (mod 2).

It now follows that 48 | f(n) for all positive integers n. It follows that M = 48.

Problem IX-2-S.3
Nine (not necessarily distinct) 9-digit numbers are formed using each digit 1 through 9 exactly once. What is the
maximum possible number of zeros that the sum of these nine numbers can end with? [Kvant]

Solution.The answer is eight. Since

8× 987654321+ 198765432 = 8100000000,

the answer is at least 8. But the largest possible value that the sum can take is

9× 987654321 = 8888888889,

so the only other possibility is to have nine zeros.
Now each number whose digits are a permutation of 1, . . . , 9 is a multiple of 9, since the sum of their
digits is 45 (which is a multiple of 9). Therefore any sum of these numbers must also be a multiple of 9.
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But the only 10-digit number ending in nine zeros that is a multiple of 9 is 9000000000, and this is larger
than our upper bound.

Problem IX-2-S.4

Note that
√
2
2
3
= 2

√
2
3

. Determine conditions for which
√

a
b
c
= a

√
b
c
, where a, b, c are positive integers.

[CRUX]

Solution. Assume that a, b, and c satisfy√
a
b
c
= a

√
b
c
, i.e.,

√
ac + b

c
= a

√
b
c
.

Squaring both sides, we get
ac + b

c
=

a2b
c
, ∴ ac = b(a2 − 1).

Since gcd(a, a2 − 1) = 1, a cannot divide a2 − 1. Therefore a divides b.
Let b = ka for some integer k ≥ 1. Then c = k(a2 − 1).
It is easily verified that for any choice of integers a ≥ 2 and k ≥ 1, the triple

(a, b, c) =
(
a, ka, k(a2 − 1)

)

will satisfy the condition.

Problem IX-2-S.5
Find all positive integers n satisfying the following condition: numbers 1, 2, 3, . . . , 2n can be split into pairs
such that if the numbers in each pair are added, and the sums are then multiplied together, the result is a perfect
square. [Tournament of Towns]

Solution.We claim that n satisfies the condition if n > 1. We first observe that n = 1 fails the condition.
For n = 1 the only pairing is {1, 2}, the sum of which is 3, i.e., not a perfect square. We now consider
separately the cases when n is even and when n is odd.

Case 1, n even: Then n = 2k where k ≥ 1. By pairing i with 2n + 1− i for i = 1, 2, . . . , n, we get a
product of ((2n + 1)k)2.

Case 2, n odd: Then n = 2k + 1 where k ≥ 1. When k ≥ 1, we pair 1 and 5, 2 and 4, 3 and 6, and 6+ i
with 2n + 1− i for i = 1, 2, . . . , n − 3 = 2k − 2. The product is then

(1+ 5)(2+ 4)(3+ 6)(2n + 7)2k−2 =
(
18 · (2n + 7)k−1)2 .


