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How To Prove It
In Part I of this article, we remarked that there are essentially
three components of a proof by induction:

Step 0: Framing the hypothesis or conjecture.

Step 1: Anchoring the induction, i.e., verifying the initial
step.

Step 2: The bridge step, i.e., establishing the link between
successive propositions of the induction hypothesis.

We dwelt at length on Step 0 (framing the hypothesis or
conjecture), remarking that this step is generally completely
ignored in the teaching of mathematics, thereby giving the
impression that the formula to be proved literally comes out
of nowhere. To illustrate this, let me quote an actual
experience that I have often had as a mathematics teacher at
the class 11 level: I ask the class to prove, using the principle
of induction, that the sum of the squares of the first n natural
numbers is equal to n(n+ 1)(2n+ 1)/6. Most of them are
able to do so successfully. And then, a student comes after
the class and asks, “Excuse me, we have proved this formula
using the principle of induction; but where did we get this
formula in the first place?” This innocent question captures
the precise point that we are trying to make.

Having dwelt on this point in detail earlier, we now dwell on
the remaining two steps by focusing on a few case studies.
We shall study some examples that may not be so familiar
to readers.

Abstract structure of a proof by induction
To start with, we describe in abstract the essential features of
Steps 1 and 2 of a proof by induction.

Our intention is to establish that a certain given proposition
P(n) is true for all positive integers n. Note that P(n) is a
proposition for each positive integer n; it is either true or false.
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We start (Step 1) by showing that P(1) is true. This typically simply consists of verifying a numerical
equality.

Next (Step 2) we show that for an arbitrary positive integer k, the truth of P(k) implies the truth of
P(k+ 1). Expressed compactly: we show that the implication

P(k) =⇒ P(k+ 1) (1)

is true for any arbitrary positive integer k.

Here, the emphasis on the word ‘arbitrary’ needs to be noted. Precisely because k is arbitrary, what the
above establishes is the following infinite chain of implications:

P(1) =⇒ P(2) =⇒ P(3) =⇒ P(4) =⇒ · · · . (2)

The conclusion is now: P(1) is true, therefore P(2) is true, therefore P(3) is true, therefore P(4) is true,
and so on, indefinitely. In short, P(n) is true for every positive integer n. So we have proved what we set
out to prove. In practice, we do not bother to write this final sentence. We simply write: “As (1) and (2)
have been proved, it follows that P(n) is true for every positive integer n.”

A few familiar examples
Example 1 (Sums of squares of the natural numbers). The sum of the squares of the first n natural
numbers is equal to n(n+ 1)(2n+ 1)/6.

This is the result about which the student had registered a protest! But we have already described in the
first part of this article (the July 2020 issue of AtRiA) how it is possible to hit upon this formula by playing
with the sequence.

Note carefully the sequence of steps set out below. Also note the notation that we use.

We start by defining P(n) to be the proposition (or assertion),

The sum of the squares of the first n natural numbers is
n(n+ 1)(2n+ 1)

6
. (3)

Step 1 (anchor): We check that the conjectured relationship or proposition is true for some initial value
of n, typically n = 1. In this instance, it amounts to checking that the first squared number (i.e.,
12) is equal to

1 × 2 × 3
6

.

This is clearly true (both sides are equal to 1). So P(1) is true.

Step 2 (inductive step): We proceed to show that for any arbitrary positive integer k, the truth of P(k)
implies the truth of P(k+ 1). So we must verify that

P(k) =⇒ P(k+ 1),

for an arbitrary positive integer k. Now, P(k) is the assertion that

12 + 22 + 32 + · · ·+ k2 =
k(k+ 1)(2k+ 1)

6
,

while P(k+ 1) is the assertion that

12 + 22 + 32 + · · ·+ k2 + (k+ 1)2 =
(k+ 1)(k+ 2)(2k+ 3)

6
.
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Therefore, proving that P(k) =⇒ P(k+ 1) is the same thing as proving that
k(k+ 1)(2k+ 1)

6
+ (k+ 1)2 =

(k+ 1)(k+ 2)(2k+ 3)
6

.

This in turn is equivalent to proving that
(k+ 1)(k+ 2)(2k+ 3)

6
− k(k+ 1)(2k+ 1)

6
= (k+ 1)2,

i.e., (k+ 2)(2k+ 3)− k(2k+ 1) = 6(k+ 1).

The verification of the last line takes an instant. It follows that the stated formula giving the sum
of the squares of the first n positive integers is true.

Example 2 (A divisibility problem). The quantity 9n − 2n is a multiple of 7 for every positive integer n.

As earlier, we start by defining P(n) to be the proposition,

The quantity 9n − 2n is a multiple of 7. (4)

Step 1 (anchor): We check that the proposition is true for n = 1. In this instance, it amounts to checking
that 9 − 2 is a multiple of 7. This is true. So P(1) is true.

Step 2 (inductive step): We must show that for any arbitrary positive integer k, the truth of P(k) implies
the truth of P(k+ 1). Now, P(k) is the assertion that

9k − 2k is a multiple of 7,

while P(k+ 1) is the assertion that

9k+1 − 2k+1 is a multiple of 7.

This implication can be shown in several ways. Here is one such. Since 9k − 2k is a multiple of 7,
we write

9k − 2k = 7m
for some integer m. We now have:

9k+1 − 2k+1 = 9 · 9k − 2 · 2k

= 9 ·
(
2k + 7m

)
− 2 · 2k

= 7 · 2k + 63m = 7
(
2k + 9m

)
.

The last line shows clearly that 9k+1 − 2k+1 is a multiple of 7. So we have shown that
P(k) =⇒ P(k+ 1). Since P(1) is true, it follows that 9n − 2n is a multiple of 7 for all positive
integers n.

A few not-so-familiar examples
Before continuing, we note that there are two obvious variations which may occur in the standard proof by
induction.

• The conjecture may have to be proved not from n = 1 but from some subsequent point. For
example, we may have a statement like this: “Such and such a statement is true for all integers
n ≥ 3.” (Example: “For all integers n ≥ 3, the sum of the angles of a n-sided convex polygon is
equal to (n− 2)180◦.”) In such cases, we must anchor the induction suitably, i.e., start by
verifying the conjecture for the base value of the argument.
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• The conjecture may have to be proved not for all positive integers n but for some suitable subset of
the positive integers; for example, for all odd positive integers n; or for all positive integers n of the
form 1 (mod 3); and so on. In such cases, the inductive step has to be modified suitably. The way
this has to be done will depend on the specifics of the situation.

Some of the examples shown below exhibit these features.

Example 3 (Another divisibility problem). The quantity 2n + 3n is a multiple of 5 for all odd positive
integers n.

As earlier, we start by defining P(n) to be the proposition,

The quantity 2n + 3n is a multiple of 5. (5)

So we have to prove that the propositions P(1), P(3), P(5), P(7), . . . are all true.

Step 1 (anchor): We check that the proposition is true for n = 1. In this instance, it amounts to checking
that 2 + 3 is a multiple of 5. This is true. So P(1) is true.

Step 2 (inductive step): We are required to prove the proposition for the odd integers. To move from
each odd integer to the next one requires an addition of 2. So our task is the following. We must
show that for any arbitrary positive integer k, the truth of P(k) implies the truth of P(k+ 2).
Now, P(k) is the assertion that

2k + 3k is a multiple of 5,

while P(k+ 2) is the assertion that

2k+2 + 3k+2 is a multiple of 5.

This implication can be shown in several ways. Here is one such. Since 2k + 3k is a multiple of 5,
we write

2k + 3k = 5m
for some integer m. We now have:

2k+2 + 3k+2 = 4 · 2k + 9 · 3k

= 4 · 2k + 9 ·
(
5m− 2k

)

= 45m− 5 · 2k = 5
(
9m− 2k

)
. (6)

The last line shows clearly that 2k+2 + 3k+2 is a multiple of 5. So we have shown that
P(k) =⇒ P(k+ 2). Since P(1) is true, it follows that 2n + 3n is a multiple of 5 for all odd
positive integers n.

Comment. A little tweak to the above analysis shows that we can get more from this line of thinking than
had been asked for at the start. From the relation (6) obtained above, we see that:

2k+2 + 3k+2 = 9 ·
(
2k + 3k

)
− 5 · 2k. (7)

Since 5 · 2k is a multiple of 5, and 9 is coprime to 5, relation (7) implies the following:

2k+2 + 3k+2 is a multiple of 5 ⇐⇒ 2k + 3k is a multiple of 5. (8)

Since 22 + 32 = 13 is not a multiple of 5, the above relation (8) shows that the quantities

24 + 34, 26 + 36, 28 + 38, 210 + 310, . . .

are all non-multiples of 5.
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Example 4 (Yet another divisibility problem). The quantity 1n + 2n + 3n + 4n is a multiple of 5 for all
positive integers n except the multiples of 4.

We start by defining P(n) to be the proposition,

The quantity 1n + 2n + 3n + 4n is a multiple of 5. (9)

So we must prove that the propositions P(1), P(2), P(3), P(5), P(6), . . . are all true.

As the proposition to be proved is of a more complex nature, we can expect to have to apply the inductive
approach in a more flexible manner.

Step 1 (anchor): In general, this step consists of a single verification. However, the situation is of an
unusual nature here. So we shall examine whether the propositions P(1), P(2), P(3), P(4) are
true. Here are the results:

n 1n + 2n + 3n + 4n Divisible by 5? Conclusion
1 10 Yes P(1) is true
2 30 Yes P(2) is true
3 100 Yes P(3) is true
4 354 No P(4) is not true

Step 2 (inductive step): We have just seen that P(n) is true for n = 1, 2, 3, and false for n = 4. The
wording of the proposition suggests that this pattern will repeat: P(n) will be found to be true for
n = 5, 6, 7, and false for n = 8. Observe that the numbers in the second group are 4 more than
the numbers in the first group. This suggests the strategy we need to use. Instead of advancing
from n to n+ 1 (as we generally do), or from n to n+ 2 (as we did in the previous example), why
don’t we advance from n to n+ 4? That is, why don’t we try to prove the following? —

P(n) =⇒ P(n+ 4). (10)

This is just the task that we now take up. We have:(
1n+4 + 2n+4 + 3n+4 + 4n+4)− (1n + 2n + 3n + 4n)
= (1 + 16 · 2n + 81 · 3n + 256 · 4n)− (1n + 2n + 3n + 4n)
= 15 · 2n + 80 · 3n + 255 · 4n.

The above result shows that(
1n+4 + 2n+4 + 3n+4 + 4n+4)− (1n + 2n + 3n + 4n) (11)

is a multiple of 5. Hence:

1n+4 + 2n+4 + 3n+4 + 4n+4 is a multiple of 5 (12)
⇐⇒ 1n + 2n + 3n + 4n is a multiple of 5. (13)

The above relation shows that we have proved more than what was required! We had set out to
prove that P(n) =⇒ P(n+ 4); instead we have proved:

P(n) ⇐⇒ P(n+ 4). (14)

We already know that P(1) is true. From the above relation, we deduce that all of the following
are true as well:

P(5), P(9), P(13), P(17), P(21), . . . .



48 Azim Premji University At Right Angles, March 2021

Similarly, as we already know that P(2) and P(3) are true, we deduce that all of the following are
true as well:

P(6), P(10), P(14), P(18), P(22), . . . ,

P(7), P(11), P(15), P(19), P(23), . . . .

And finally (and most importantly), as we already know that P(4) is not true, we deduce that all of
the following are not true as well:

P(8), P(12), P(16), P(20), P(24), . . . .

We have now proved proposition (9) in full.

In Part III of this article, we shall consider a few more non-standard examples.

References
1. Wikipedia, “Mathematical induction” from https://en.wikipedia.org/wiki/Mathematical_induction

SHAILESH SHIRALI is Director of Sahyadri School (KFI), Pune, and Head of the Community Mathematics 
Centre in Rishi Valley School (AP). He has been closely involved with the Math Olympiad movement in 
India. He is the author of many mathematics books for high school students, and serves as Chief Editor for 
At Right Angles. He may be contacted at shailesh.shirali@gmail.com.


