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The study of the digits appearing in the decimal
expansion of a real number plays an important role
in the study of various number theoretic problems.

In particular, the parity of the digits in the powers of a prime
number is an interesting object to study. In RMO 1993, the
following problem was posed.

Problem 1 (RMO 1993). Prove that the tens digit of any
power of 3 is even.

In this article, we take a close look at the RMO problem and
prove that the conclusion holds for an infinite number of
prime numbers p. More precisely, we prove the following
theorem.

Theorem 1. Let p be a prime number such that
p ≡ 3 or 7 (mod 20). Then for any integer r ≥ 1, the tens
digit of pr is an even number.

Remark 1. Note that 3 is a prime number congruent to 3
modulo 20. Therefore, Theorem 1 is indeed a generalization
of Problem 1.

Remark 2. Dirichlet’s theorem for primes in arithmetic
progressions asserts that if a and m are integers such that
gcd(a,m) = 1, then there exist infinitely many prime
numbers q such that q ≡ a (mod m). Since
gcd(3, 20) = 1 = gcd(7, 20), the theorem tells us that there
exist infinitely many prime numbers of the forms
3 (mod 20) and 7 (mod 20). Theorem 1 now assures us that
the tens digit of any power of any such prime number is even.
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Proof of Theorem 1
We give a detailed proof for p ≡ 3 (mod 20). For the residue class 7 (mod 20), the proof follows almost
the same line of argument.

Let r ≥ 1 be an integer and let p ≡ 3 (mod 20) be a prime number. Then p = 20m+ 3 for some integer
m. Since we are dealing with the tens digit of pr, we shall be concerned with pr (mod 100). Therefore, it is
convenient to put k = 2m and use the fact that k is an even integer.

The proof is by induction on r. For r = 1, the tens digit of pr is even because p = 10k+ 3 with k even.
Therefore, the theorem holds true for r = 1. Now, suppose that the tens digit of pr is even for some integer
r ≥ 1.

Let pr = a0 + a1 · 10+ a2 · 102 + · · ·+ as · 10s be the decimal expansion of pr (where s is some positive
integer). Then we have

pr+1 = (10k+ 3)(a0 + a1 · 10+ a2 · 102 + . . .+ as · 10s)
≡ 3a0 + 30a1 + 10k · a0 (mod 100). (1)

By the induction hypothesis, a1 is even. Also, we note that since p ≡ 3 (mod 10), we have
pr+1 ≡ a0 ≡ 1, 3, 7, 9 (mod 10). We consider the four cases separately.

Case 1, a0 = 1.Then pr+1 ≡ 3+ 30a1 + 10k (mod 100). Since a1 ∈ {0, 2, 4, 6, 8}, we have

3+ 30a1 + 10k =




10k+ 3 if a1 = 0,
10k+ 63 if a1 = 2,
10k+ 123 if a1 = 4,
10k+ 183 if a1 = 6,
10k+ 243 if a1 = 8.

Since k is even and the tens digits of 3, 63, 123, 183 and 243 are all even, we conclude that the tens digit
of pr+1 is even.

Case 2, a0 = 3.Then pr+1 ≡ 9+ 30a1 + 30k (mod 100). Since a1 ∈ {0, 2, 4, 6, 8}, we have

9+ 30a1 + 30k =





30k+ 9 if a1 = 0,
30k+ 69 if a1 = 2,
30k+ 129 if a1 = 4,
30k+ 189 if a1 = 6,
30k+ 249 if a1 = 8.

Again we note that the tens digits of 9, 69, 129, 189 and 249 are all even. Hence the tens digit of pr+1

is even.

Case 3, a0 = 7.Then pr+1 ≡ 21+ 30a1 + 70k (mod 100). Since a1 ∈ {0, 2, 4, 6, 8}, we have

21+ 30a1 + 70k =




70k+ 21 if a1 = 0,
70k+ 81 if a1 = 2,
70k+ 141 if a1 = 4,
70k+ 201 if a1 = 6,
70k+ 261 if a1 = 8.
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Since the tens digits of 21, 81, 141, 201 and 261 are all even, we conclude that the tens digit of pr+1 is
also even.

Case 4, a0 = 9.Then pr+1 ≡ 27+ 30a1 + 90k (mod 100). Since a1 ∈ {0, 2, 4, 6, 8}, we have

27+ 30a1 + 90k =




90k+ 27 if a1 = 0,
90k+ 87 if a1 = 2,
90k+ 147 if a1 = 4,
90k+ 207 if a1 = 6,
90k+ 267 if a1 = 8.

Since the tens digits of 27, 87, 147, 207 and 267 are all even, we conclude that the tens digit of pr+1 is
also even.

Therefore, by the method of mathematical induction, we conclude that the tens digit of any power of p is
even. This completes the proof of Theorem 1. □
The interested reader can enquire for which prime powers the tens digit is divisible by 4, by 8, and so on.


