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In the March 2020 issue of At Right Angles, as part of the ‘Low 
Floor High Ceiling Tasks’ series [1], the following problem was 
studied.

In how many ways can nine given numbers in arithmetic progression 
be arranged in a V shape such that the sums of the numbers on both 
the arms of the V are equal?

In our exploration of the problem, we noticed that the solution 
given in the article had an error. Here we provide a corrected 
count for the number.

Without loss of generality, we assume the 9 numbers in arithmetic 
progression to be the integers 1, 2, . . . , 9. We have:

9 101 2 9 45.
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If x is the number at the bottom of the V, then the sum of the 
numbers in each arm (excluding the centre) must be (45 – x)/2. 
Clearly, x must be odd. So x ∈ {1,3,5,7,9}.

To start with, we ignore the actions of rearranging the numbers 
in the arms and mirroring the arms. To account for this, at the 
end we multiply by 2 · (4!)2.

The cases when 1 and 9 are at the centre may be matched 1 – 1 
with each other, by replacing each number k by 10 − k, uniformly 
through the V. These two cases must therefore have the same 
number of possibilities. The same applies to 3 and 7. So we only 
need to focus on the cases when the central number is 5, 7 or 9.

When the central number is 9, the sum in each arm is (45 − 9)/2 
= 18. Consider the pairs {1, 8}, {2, 7}, {3, 6} and {4, 5}. Each 
pair has the same sum, 9, which is half of 18. It follows that if 
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even one of these pairs stays intact (i.e., has both 
numbers on the same arm of the V), then all the 
pairs must stay intact. By fixing {1,8} on one arm, 
we have 3 choices for the other pair which must 
accompany it, thus making for 3 possibilities. 
Once this is done, there are no more choices 
possible. Thus there are 3 possibilities in which all 
the pairs stay intact.

Next, consider the case where 1 and 8 lie on 
different arms. The three other numbers on the 
same arm as 8 must add to 10. Since 3 + 4 + 
5 > 10, the smallest number on that arm must 
be 2. The two remaining numbers on that arm 
must now add to 8. There is just one possible 
way of achieving this: 3 + 5. It follows that the 
numbers on the same arm as 8 are {2, 3, 5, 8}, 
which means that the numbers on the other arm 
are {1, 4, 6, 7}. Observe that with 1 and 8 on 
different arms, there is just one way of assigning 
the remaining numbers to the two arms.

So, with 9 at the centre of the V, there are a 
total of 3 + 1 = 4 possibilities. So there are also 4 
possibilities with 1 at the centre of the V.

Next, consider the case when the central number 
is 7. The sum of the numbers on each arm is (45 
− 7)/2 = 19. As the sum is odd, each arm must 
have an odd number of odd numbers. As there

are four odd numbers available (namely, {1, 3, 5, 
9}), one arm must have three odd numbers and 
the other arm must have one odd number. There 
are 4 ways of choosing 3 odd numbers from the 
collection {1, 3, 5, 9}. The choice 1, 3, 5 forces 
the fourth number on that arm to be 10, which 
is not admissible; so this choice is not available. 
The other three choices all lead to valid solutions:

Choice of 3 numbers Solution for the V
{1,3,9} {1,3,9,6} | {7} | {2,4,5,8}
{1,5,9} {1,5,9,4} | {7} | {2,3,6,8}
{3,5,9} {3,5,9,2} | {7} | {1,4,6,8}

This gives 3 possibilities each for 3 and 7 at the 
centre.

Finally, we consider the case when 5 is at the 
centre. The sum of the numbers on each arm is 
(45 − 5)/2 = 20. As the sum is even, each arm 
must have an even number of odd numbers. The 
odd numbers available are {1, 3, 7, 9}. We could 
have all the odd numbers on the same arm; this 
leads to a solution since 1 + 3 + 7 + 9 = 20. Else, 
we must have two odd numbers on each arm. If 
{1, 3} are on the same arm, then the other two 
numbers can only be {7, 9}, which leads to the 
solution already listed; so we do not consider 
this possibility. There are two other possibilities, 
and both lead to valid solutions. If {1, 7} are on 
the same arm, then the other two numbers can 
only be {4, 8}; the numbers on the other arm are 
then {3, 9, 2, 6}. Finally, if {1, 9} are on the same 
arm, the other two numbers being even, then the 
other two numbers can be {4, 6} or {2, 8}. This 
possibility thus leads to two valid solutions. It 
follows that with 5 at the centre, there are a total 
of 1 + 1 + 2 = 4 possibilities.

Our analysis thus yields a total of 4 + 3 + 4 + 3 + 
4 = 18 possibilities.

Taking rearrangements into account, it follows 
that the number of ways of filling the V according 
to the required conditions is

( )22 4! 18 20736.⋅ ⋅ =
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