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In this article, we study a geometry problem adapted
from the Putnam exam of 2019. (The William Lowell
Putnam Mathematical Competition or the ‘Putnam

Competition’ is an annual mathematics competition for
undergraduate college students enrolled at institutions of
higher learning in the United States and Canada.)

Problem. In triangle ABC, let G be the centroid and I be the
center of the inscribed circle. Let α and β be the angles at
the vertices A and B, respectively. Suppose that the segment
IG is parallel to AB, and tan β/2 = 1/3. Find α.
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Figure 1.
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Solution. We use approaches from coordinate geometry, trigonometry and pure geometry and argue as
follows.

• We are told (see Figure 1) that tan β/2 = 1/3. From this it follows that

tan β =
2 tan β/2

1− tan2 β/2 =
2/3

1− 1/9
=

3
4
.

• We start by assigning coordinates as follows: B = (0, 0), A = (a, 0). Note that AB lies on the
x-axis.

• As tan∡CBA = 3/4, we may fix the scale of the coordinate axes so that C = (4, 3).

• Using this, we find that the y-coordinate of the centroid G is 1.

• Since IG ∥ AB, it follows that the y-coordinate of I too is 1.

• Since tan∡IBA = 1/3, it follows that the x-coordinate of I is 3; so I = (3, 1).

• Since the distance from I to AB is 1, it follows that the radius of the incircle is 1.

We may now follow two possible approaches.

First approach: We use the formula connecting radius of the incircle and area of the triangle:

Radius of incircle =
Area of triangle

Semi-perimeter of triangle
.
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Figure 2.

Here we have (see Figure 2):

Area =
3a
2
,

Perimeter = a+ 5+
√

(a− 4)2 + 32,
Radius = 1.
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Hence:

a+ 5+
√

(a− 4)2 + 32 = 3a,

∴ (2a− 5)2 = (a− 4)2 + 32,

∴ 3a2 = 12a,

giving a = 4. (The solution a = 0 is not meaningful.) Hence A = (4, 0). Since C = (4, 3), it
follows that CA ⊥ AB. Thus α = 90◦. □

Second approach: Here we think geometrically rather than algebraically.
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Figure 3.

Draw a perpendicular CD from C to AB. Also draw the incircle (centre I, radius 1) of triangle
ABC. Since the x-coordinate of I is 3, and line CD has equation x = 4, it follows that the incircle
touches CD. But it also touches line CA, by definition of an incircle. This means that both CD
and CA are tangent to the incircle. Therefore they coincide, which means that D coincides with A.
This implies that ∡CAB is a right-angle, i.e., α = 90◦. □
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