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1 Abstract: 

2 Extreme climatic events and variability are on the rise around the world, with varying 

3 implications for populations across socio-economic conditions. Effective strategies for 

4 climate adaptation and development depend on understanding these differential 

5 sensitivities to climatic variability. This study focuses on a vulnerable population living 

6 in forest-fringe villages of central India, where seasonal migration is a common 

7 livelihood strategy for poor households to supplement their incomes with remittances. 

8 We quantify the relative sensitivity of a decision to migrate for the first time to climate 

9 and socio-economic variables and how the sensitivities vary for different segments of the 

10 population. We surveyed 5000 households in 500 forest-fringe villages to identify 

11 patterns of migration from 2013-17. Using a mixed-effects logistic regression model, we 

12 predicted the probability of first-time migration of a household member based on climate 

13 variables and household- and district-level characteristics. We find that households in 

14 more agricultural and prosperous districts experience lower rates of migration but are 

15 more sensitive to climatic variability than households in poorer districts. The probability 

16 of first-time migration from a household in the most prosperous district increases by 

17 approximately 40% with one standard deviation in mean maximum temperature or 

18 rainfall from the 1981-2017 mean. However, the probability of migration does not vary 

19 as a function of climatic variability for households in the poorest district. We attribute 

20 this difference in sensitivities to the greater dependence on agriculture and irrigation in 

21 more prosperous districts and poverty-driven dependence on migration regardless of the 

22 climate in poorer districts. Households investing remittances from migration in 

23 agricultural intensification could become increasingly sensitive to climate variability, 
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1 particularly with water shortages and projected increases in climate variability in the 

2 region. Promotion of non-agricultural livelihood options and climate-resilient agriculture 

3 could the reduce sensitivity of migration to climate variability in the study region. 

4

5

6 Keywords: seasonal migration, central India, rural livelihoods, COVID, climate change
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1 INTRODUCTION

2

3 Many studies identify extreme climatic events and variability associated with climate 

4 change as ‘push’ factors for migration, especially in low-income countries (1–4). 

5 Climatic variability and extreme events affect patterns of migration in different ways. For 

6 example, various studies in different locations show that extreme precipitation events are 

7 associated with short-distance migration (5–7). A rainfall deficit is linked to higher 

8 internal and international migration out of regions dependent on rain-fed agriculture (8–

9 11). Positive temperature anomalies and gradual temperature increases are significantly 

10 correlated with the increase in migration (3,12–14). 

11

12 It is well established that agricultural dependency influences the climate- migration 

13 relationship, especially in rural landscapes (7,15,16). Agricultural land is a physically 

14 immovable asset, lowering the likelihood of migration in some cases (10,17). However, 

15 higher dependence on agriculture may also increase the exposure of a household to 

16 climatic variability (18). Climatic variability is associated with reductions in agricultural 

17 yields and incomes (19,20), which may compel household members to migrate to cope 

18 financially. For example, an increase of one standard deviation (SD) in a warm spell 

19 duration increases the odds of migration by 15% of rural Mexicans, primarily dependent 

20 on subsistence farming or agricultural employment (21). In Bangladesh, Carrico and 

21 Donato (2019) find there is a significant increase in the probability of internal migration 

22 for the first time from agricultural households when experiencing one SD increase in a 

23 dry spell duration (22). Non-agricultural households, in contrast, remain largely 
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1 unaffected by dry spells (22). Sedova and Kalkuhl (2020) note that negative precipitation 

2 anomalies only significantly impact rural agricultural households and not non-agricultural 

3 households in India, encouraging the urban-bound migration of a household member (7). 

4

5 Despite the sensitivity of agricultural yield to climatic variability, agriculture is generally 

6 considered a common pathway out of poverty. Mainstream developmental policies and 

7 welfare schemes promote agriculture and agricultural intensification as a way to alleviate 

8 poverty especially amongst rural, and often forest-dependent populations (23–26). 

9 Interestingly, several studies find that migrants invest in agricultural land and agricultural 

10 transformation practices when they accumulate wealth from migration over years (27–

11 29). For example, in rural Mexico, the proportion of agricultural land, both irrigated and 

12 non-irrigated, significantly increases with a migrant in a household over a decade (27). In 

13 rural Ethiopia, a percentage increase in remittances from migrants is associated with a 

14 0.11-hectare increase in landholding and a significant increase in agricultural income 

15 back home (29). While agriculture has had a positive impact on poverty reduction for the 

16 poorest and most vulnerable societies in the recent past (30–32), with expected future 

17 increases in climate variability, it is crucial to evaluate rural livelihood strategies in the 

18 context of climatic variability. 

19

20 A primarily agrarian nation, India is at the forefront of risks from climate change (26). In 

21 recent decades there is a trend of higher maximum temperatures in comparison to the past 

22 (33). While parts of India have seen a mean decline of 10% in precipitation in the last 65 

23 years, there has also been a 75% increase in the frequency of extreme precipitation events 
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1 (34). Projections indicate increasing heat stress and a weakening summer monsoon, 

2 which is crucial for water security in parts of the country (33,35).  Additionally, the sub-

3 seasonal and inter-annual precipitation variability of the monsoon is also projected to 

4 increase (36–38). India’s increasing climatic variability leaves a vast population, 

5 especially those engaged in agriculture, highly vulnerable to livelihood losses (26). 

6

7 Due to spatial and social disparities in economic development, livelihood options in rural 

8 Indian landscapes are often limited (39–42). Seasonal migration (defined as the absence 

9 from one’s place of residence for up to six months a year (43)) is a common livelihood 

10 strategy amongst socially vulnerable groups in India (42–48). Approximately 83% of 

11 seasonal migrants recorded in the National Sample Surveys (2005, 2010, 2012) belonged 

12 to socio-economically disadvantaged communities officially recognized in India (46). 

13 While seasonal migration is common in India, people often migrate in distress rather than 

14 aspirational reasons, such as skills development or wealth accumulation (6,41,42,47,49). 

15 Rapid economic development in the country in the recent past has created a large demand 

16 for seasonal migrants, especially in the construction sector in urban and peri-urban areas 

17 (46,50).  However, migrants work in harsh conditions and live in unsafe makeshift 

18 accommodations (50,51). Further, migrants are often part of informal labor markets, 

19 which do not provide adequate financial compensation and other employment benefits 

20 (44,50).

21

22 Rural households continually re-evaluate their livelihood strategies. For example, the 

23 financial slow-down due to lockdowns in Indian cities has compelled panicking migrants 
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1 to return to their homes from urban areas in the first and second waves of covid-19 (52–

2 54). As evidence emerges from other countries through the pandemic, we can expect an 

3 increase in dependence on agriculture, and agricultural transformation and intensification 

4 practices amongst households that once had migrants (55). In the recent past, agricultural 

5 technologies, such as irrigation, have indeed allowed households in India to increase 

6 agricultural yields and reduce dependence on migration remittances (56). However, the 

7 agricultural pathway out of poverty is complex due to its links to a changing climate. In 

8 this light, the effectiveness of rural development policies and welfare schemes relies on 

9 understanding evolving livelihood strategies and the sensitivity of sections of a 

10 population to climatic variability. 

11

12 Using central India as a study system, this analysis addresses a rural household’s decision 

13 to adopt migration as a livelihood strategy in relation to climatic variability, household-

14 level socio-economic characteristics, and surrounding livelihood options reflected in 

15 district-level poverty indices. We focus on the Central Indian Landscape (CIL) because it 

16 experiences a high amount of inter-annual variability in the summer monsoon (38), has a 

17 large proportion of households with members who migrate seasonally (49), and is one of 

18 the poorest regions of the country.

19 .

20
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1

2 Figure 1: Map of the Central India Landscape. Circles represent 500 survey villages 

3 included in this survey. The colour and the size of the circles represent the proportion of 

4 households (out of a maximum of 10 households) with at least one seasonal migrant. 

5

6 Focussing on the CIL (Figure 1), for the time period between 2013 and 2017, we ask the 

7 following questions: (1) what is the relative sensitivity of a household’s decision to send 

8 a member to migrate for the first time to climate anomalies and household and district 
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1 characteristics?; and (2) how does this sensitivity vary for different segments of the 

2 population?

3  

4 DATA AND METHODS

5

6 Study Area 

7 We define the CIL as 32 administrative districts spread across the states of Madhya 

8 Pradesh (MP), Maharashtra, and Chhattisgarh (Figure 1). The CIL is home to one of 

9 India’s largest tribal populations, predominantly the Gond and Baiga tribes. 

10 Approximately 22% of the population belongs to an officially recognized Scheduled 

11 Tribe (57). The region is predominantly rural, and approximately 37% of the villages in 

12 the region are forest fringe villages (defined in this study as villages within 8 kilometres 

13 of a patch of forest >500 hectares). Many tribal populations are either landless or hold 

14 small plots of agricultural land (58,59). 

15

16 Livelihoods in the CIL

17 While livestock rearing, fishing, and collection of non-timber forest products were 

18 primary livelihoods in the latter half of the last century, forest-fringe village economies in 

19 several central Indian districts have shifted to more intensive agriculture (41). Due to the 

20 lack of livelihood options in less prosperous districts, migration is an important source of 

21 income particularly for scheduled castes and tribes (41,42,60,61). In households with 

22 migrants, up to half of a household’s total income may be derived from migration for 

23 mainly non-farm sector work (41). Depending on when a household member migrated for 
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1 the first time, migration may allow poorer households to ‘catch up’ with richer ones by 

2 clearing debts and through wealth and asset accumulation (41,60,61). 

3

4 Climatic variability in the CIL

5 The CIL is mainly dependent on rain-fed agriculture (62). Moreover, agricultural 

6 technologies, such as canal and groundwater irrigation, are also dependent on the summer 

7 monsoon and thus impacted by variability in precipitation and temperature (63,64). In the 

8 recent past, the CIL has experienced large climatic variability (Figure 2). There has been 

9 a weakening of the summer monsoon (35,38) and an increase in the frequency and 

10 duration of heatwaves in the CIL from 1901 to 2012 (35). 

11

12
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1

2 Figure 2: Violin plots representing the deviation from the long-term (1981 to 2017) mean 

3 maximum temperature in the summer monsoon (June, July August and September) from 

4 2012 to 2017 across 476 surveyed villages of this study. The mean maximum temperature 

5 of 476 villages for every year is represented by the black dot on each of the violin plots. 

6 The density and distribution of the deviations from the mean are depicted by the breadth 

7 and length of each violin plot. Temperature data was derived from Climate Prediction 

8 Center (https://www.cpc.ncep.noaa.gov/). 

9

10 In the next four decades, the CIL is projected to experience an increase of 1.92 degrees 

11 Celsius relative to 1976- 2005 in annual mean surface temperature (Scenario: 
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1 Representative Concentration Pathway 4.5) (65). Projections indicate uncertainty in the 

2 seasonal mean precipitation but an increase in inter-annual variation in precipitation 

3 during the monsoon season (37,38,65). 

4

5 Household Survey Data 

6 This study examines seasonal migration in rural populations in forest-fringe villages. 

7 From January to April 2018, we surveyed ten households each across 500 villages in the 

8 CIL, irrespective of the total population of the village. Each survey lasted approximately 

9 45 minutes and included questions about household members who have migrated for 

10 work, the duration and destination of their migration, and a household’s socio-economic 

11 characteristics. We selected the years 2013 to 2017 for this study because the survey 

12 questions about the first year of migration relied on the respondent’s ability to recall past 

13 events, which are less reliable over longer time periods. Baquie et al (2020) provide 

14 details of the sampling strategy and survey.

15

16 Of the 5000 households surveyed, approximately 18% of the surveyed households (889 

17 households) had at least one migrant. For this study, we examined 4323 surveyed 

18 households (SI Table 1), of which 418 households had first-time migrants between 2013- 

19 2017 (Figure 3). Migration, as per our survey, is predominantly seasonal (SI Figure 1). 

20 92% of migrants across 418 households migrate for 3 months or less. Approximately 

21 66% of all the migrants in this survey engage in unskilled labor, such as daily wage labor, 

22 brick making, and industry jobs (SI Figure 2). 

23
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1

2 Figure 3: Number of first time migrants from 4323 households across 476 villages in 

3 every year since 1981. Due to reliability of recall, we only consider first-time migrants 

4 from 2013 to 2017 in this study. Data derived from household survey. 

5

6 The survey displays the fairly homogenous group of people living in forest-fringe 

7 villages in the CIL. For example, 78% of the respondents surveyed were not educated 

8 beyond secondary school, and approximately 96% of households identified as scheduled 

9 caste or tribe or another backward caste (official government designations). 

10 Approximately 62% of the households considered agriculture their primary occupation, 

11 which is likely combined subsistence and market-oriented agriculture given small 

12 landholding sizes (mean = 2.64 acres ± 4.37 acres). An additional 26% engaged in 

Page 13 of 33 AUTHOR SUBMITTED MANUSCRIPT - ERL-110333.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



1 agriculture as their secondary occupation during the summer monsoon. Only 28% of the 

2 households had access to irrigated land in 2013 and 2018. 

3

4 Outcome and Predictor Variables 

5 Based on previous studies, we included socio-economic variables at the household, 

6 village, and district levels as predictor variables (41,43) (Table 2). The response variable 

7 is binary – whether the household had a first- time seasonal migrant in a particular year 

8 considered in this study (2013- 2017) or not. We control for household size, debt and 

9 education. 

10

11 At the district level, the multi-dimensional poverty index (MPI) is an indicator of the 

12 overall poverty and access to education and health facilities in the household’s location 

13 (66) (SI Figure 3 and SI Table 2). The MPI considers ten indicators of poverty across the 

14 three dimensions – health, nutrition, and living standards: child mortality, nutrition, years 

15 of schooling, school attendance, cooking fuel used in a household, sanitation, availability 

16 of drinking water, availability of electricity, state of a house (mud or cement house) and 

17 assets a household owns (66). 

18

19 At the village level, we accounted for spatially uneven economic development by 

20 including the distance to a Class I city (population>500,000) in the model (67), as over 

21 85% of the migrants seasonally migrate to Class I cities. Given the significance of 

22 agriculture in the region, we considered climatic variables for the summer monsoon 

23 period only (June to September; SI Table 3). Based on previous literature, we selected 
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1 commonly used climatic indices descriptive of trends in temperature and precipitation 

2 (68). We used the Climate Hazards Group InfraRed Precipitation and Station Data 

3 (CHIRPS) for precipitation indices (69). Temperature data was derived from the Climate 

4 Prediction Center (CPC; https://psl.noaa.gov/). We calculated the standard deviation (SD) 

5 for each climatic variable for the years 2013 to 2017 relative to the long-term mean 

6 (1981-2017). Due to the high co-linearity of climatic variables (SI Figure 4a), we tested 

7 individual climatic variables in pairs to capture a lag effect (the climatic variables for the 

8 current and previous year) in the mixed-effects logistic regression model and chose the 

9 model using the climatic variables with the lowest AIC value (SI Table 4). Continuous 

10 variables were scaled and centred to create the z score to be used to estimate the 

11 statistical model.

Covariate Abbreviati
on

Unit Mean SD Mean SD Source

Migrants
(N=418)

Non-migrants 
(N = 3905)

Education 
(Attended 
high 
school) 

ED 1| 0 2.2% NA 19.48
%

NA
Household 
questionnair
e 

Debt DT 1| 0 1.64% NA 12.21
%

NA Household 
questionnair
e

Irrigated 
land 
owned in 
2013

IL Acres 0.49 1.37 0.96 2.95
Household 
questionnair
e

Household 
Size 

HS Number of 
individual

s

5.48 2.16 5.34 2.30 Household 
questionnair
e

Multi-
dimension
al Poverty 
Index 

MPI - 0.19 0.06 0.17 0.06 Oxford 
Poverty and 
Human 
Developmen
t Initiative 
2020
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Distance 
to Class 1 
city

DC Kilometre 108.73 39.55 112.96 36.9 Asher et al. 
2019

Mean 
maximum 
daily 
temperatur
e variation 
in 
previous 
monsoon

MT Standard 
Deviation

0.29 0.91 0.26 0.89 CPC

Mean 
maximum 
daily 
temperatur
e variation 
in current 
monsoon 

MT- PY Standard 
Deviation

0.28 0.97 0.23 0.95 CPC

Total 
rainfall in 
current 
monsoon

TR Standard 
Deviation

0.16 0.20 0.24 0.23 CHIRPS

Total 
rainfall in 
previous 
monsoon

TR- PY Standard 
Deviation

0.42 0.16 0.49 0.19 CHIRPS

1 Table 2: Summary statistics of independent variables considered in the model for this 

2 study. 

3

4 First- Time Migration Model and Expectations

5 With the variables listed in Table 2 we estimated a mixed-effects logistic regression 

6 model for every year from 2013 to 2017 and for a panel-like dataset of the years 

7 combined (2013-2017). First-time migration of an individual i in a household was 

8 modelled for the combined years (Eq 1and 2) and for each individual year (Eq 3 and 4) 

9 as: 

10
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1 Logit (Yi) = b0 + b1EDi  + b2DTi  + b3DCi  + b4MPIi  + b5HSi + b5ILi  + b6MT-PYi + 

2 b7MTi+ b8MT-PYi*ILi   + b9MT-PYi*MPIi  + (1|v) + (1|t)                       (Eq. 1)

3

4 Logit (Yi) = b0 + b1EDi  + b2DTi  + b3DCi  + b4MPIi  + b5HSi + b5ILi  + b6TR-PYi + 

5 b7TRi+ b8TR-PYi*ILi   + b9TR-PYi*MPIi  + (1|v) + (1|t)                          (Eq. 2)

6

7 Logit (Yi) = b0 + b1EDi  + b2DTi  + b3DCi  + b4MPIi  + b5HSi + b5ILi  + b6MT-PYi + 

8 b7MTi+ b8MT-PYi*ILi   + b9MT-PYi*MPIi  + (1|v)                                  (Eq. 3)

9

10 Logit (Yi) = b0 + b1EDi  + b2DTi  + b3DCi  + b4MPIi  + b5HSi + b5ILi  + b6TR-PYi + 

11 b7TRi+ b8TR-PYi*ILi   + b9TR-PYi*MPIi  + (1|v)                                     (Eq. 4)

12

13 Where Yi = 1 when a household has a first-time migrant in a specific year and Yi = 0 

14 when a household does not have a first-time migrant in a specific year. Terms b1 to b9 are 

15 model coefficients. ED, DT, DC, MPI, HS and IL are abbreviations for predictor 

16 variables. MT, MT-PY, TR and TR-PY refer to climatic variables, mean maximum 

17 temperature and total rainfall considered in the current and previous year respectively 

18 (Table 2). Because mean maximum temperature and total rainfall are co-linear (SI Figure 

19 4b), we run two separate sets of models with each climate variable. One set of models 

20 incorporates the mean maximum temperature in the current and previous year and the 

21 other set of models considers total rainfall in the current and previous year (Table 3 and 

22 SI Table 5). Terms (1|t) and (1|v) represent the random effects for the year, 2013 to 2017, 

23 and village, v respectively (Eq.1). We used the Wald-Z statistic, assuming a normal 
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1 distribution, to compute the p-values for coefficient estimates and the confidence 

2 intervals around these estimates. Additionally, we estimated a model with an interaction 

3 term with the climatic variable in the current year instead of the previous year (SI Table 

4 4). 

5

6 The interaction between the variability in the mean maximum temperature (or variability 

7 in the total rainfall in the second set of models) in the previous year and the district’s MPI 

8 indicates the sensitivity of a household’s local socio-economic conditions and access to 

9 education facilities to climatic variability. The second interaction, between the variability 

10 in the mean maximum temperature (or the variability in the total rainfall) in the previous 

11 year and the ownership of irrigated land, controls for the household level differences in 

12 their ability to cope with climatic variability (70). 

13

14 To quantify the sensitivity of different segments of the population to climatic variability, 

15 we computed predictions based on the interaction term of the variability in the mean 

16 maximum daily temperature (or total rainfall in the second set of models) and the 

17 district’s MPI value. We considered mean values for the predictor variables, distance to 

18 the city, household size and irrigated land to make the predictions. We assigned the value 

19 of zero to the binary variables, education and debt, to represent the majority of the 

20 population. We carried out all analyses in R software (71), using packages lme4 (72) for 

21 the statistical model and ggeffects (73) for the model predictions. 

22

23
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1 RESULTS 

2

3 Table 3 presents the results for the mixed-effects logistic regression models (individual 

4 year models in SI Table 5). 

5

Odds Ration and 95% Confidence Intervals in parenthesis
Model 1 Model 2

Predictor Variable 2013-2017 2013-2017

Total rainfall in summer monsoon NA 0.87** 
(0.79-0.96)

Total rainfall in summer monsoon in previous year NA 0.84** 
(0.76-0.94)

Mean maximum temperature in summer monsoon 1.07
(0.97-1.19) NA

Mean maximum temperature in summer monsoon in 
previous year

1.18**
(1.05-1.31) NA

Distance to city 0.85**
(0.76-0.95)

0.86** 
(0.77-0.96)

Irrigated land owned 0.64***
(0.51-0.81)

0.67*** 
(0.54-0.83)

Household size 1.13*
(1.02-1.24)

1.12* (1.02-
1.24)

district MPI 1.45***
(1.28-1.63)

1.44*** 
(1.27-1.62)

Education 1.31*
(1.03-1.67)

1.30* (1.02-
1.66)

Debt 1.38*
(1.05-1.81)

1.38* (1.05-
1.81)

Mean maximum temperature in previous year*MPI 0.91+

(0.82-1.02) NA

Mean maximum temperature in previous year*MPI 0.79*
(0.66-0.95) NA

Total rainfall in previous year*Irrigated land owned NA 1.10+ (0.99-
1.23)

Total rainfall in previous year*Irrigated land owned NA 1.17+ (0.99-
1.38)

N 20790 20790
Villages (groups) 476 476

Years (groups) 5 5
AIC 4000.5 4000.0
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1 Table 3: Mixed effects logistic regression model results using the variability in mean 

2 maximum temperature (Model 1) and variability in total rainfall (Model 2) for the 

3 combined data (2013-2017) with first-time seasonal migration as the response variable. 

4 Values represent the odds ratio for every predictor. 95% Confidence intervals calculated 

5 using fixed effects of the models given in parenthesis below estimates. Model results for 

6 single year models from 2013 to 2017 available in SI Table 5. Significance of a predictor: 

7 *** p< 0.001 ** p< 0.01  * p<0.05  +p<0.1 

8

9 Consistent with previous studies (6,44), household characteristics such as its size, the 

10 respondent’s education, and assets are significant predictors of first-time seasonal 

11 migration in our study. For example, a household in debt is 38% more likely to have a 

12 first-time migrant when compared to a household that is not in debt. 

13

14 Overall, households in poorer districts (MPI ≥ 0.174) rely on seasonal migration more 

15 than households in richer districts (MPI<0.174). On average, 12.15% (range across 

16 districts= 2.96 – 20.00%) of the households surveyed in poorer districts (MPI ≥ 0.174) 

17 had first-time migrants in comparison to 6.41% (range across districts= 1.54 - 20.69%) of 

18 the households surveyed in richer districts (MPI <0.174; SI Table 7). This result is 

19 consistent with the historically high rate of seasonal migration in ST (Scheduled Tribe) 

20 populations, which continues in present times (43,44,50).  In our study, poorer districts, 

21 on average, have a 55% higher proportion of ST households in their population compared 

22 to richer districts (57) (SI Table 6). 

23
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1 The key finding of our study is that households in richer (lower MPI) rather than poorer 

2 (higher MPI) districts are more sensitive to annual variability in the mean maximum 

3 temperatures (Model 1) or total rainfall during the summer monsoon (Model 2) (Figure 

4 4)1. The probability of migration for a household in the richest districts (MPI = 0.031) 

5 increases by approximately 40% when it experiences 1 SD change in temperature (At 

6 mean: p = 0.005, 95% CI = 0.004–0.008, increase by 1 SD: p = 0.007, 95% CI = 0.005–

7 0.011) or total rainfall (At mean: p = 0.007, 95% CI = 0.005–0.010; decrease of 1 SD: p = 

8 0.010, 95% CI = 0.006–0.017). For households at mean MPI (0.174), the probability of 

9 sending a first-time migrant increases by 15% and 13% respectively when experiencing 

10 an 1 SD change in temperature (At mean: p = 0.013, 95% CI = 0.011-0.016; increase by 1 

11 SD: p = 0.015, 95% CI=0.013-0.018) or rainfall (At mean: p = 0.015, 95% CI = 0.013–

12 0.018, decrease by 1 SD: p = 0.017, 95% CI = 0.014–0.021). In contrast, the probability 

13 of first-time migration from a household in the poorest district (MPI = 0.278) remains 

14 unchanged when experiencing a change of 1 SD in temperature (At mean: p = 0.025, 

15 95% CI = 0.020–0.032; 1 SD increase: p = 0.026, 95% CI = 0.020– 0.033; 2 SD increase: 

16 p = 0.026, 95% CI = 0.018–0.036) or total rainfall (At mean: p = 0.026, 95% CI = 0.020–

17 0.032; 1 SD decrease: p = 0.026, 95% CI = 0.019–0.034). Mean maximum temperature 

18 and total rainfall are highly co-linear variables (SI Figure 4). Thus, the results and 

19 predictions of Model 1 and 2 show similar results at 1 SD (Figure 4). However, at more 

20 extreme climatic variability, rainfall deficits have a marginally larger impact on the 

21 probability of migration from richer districts than temperature increases (SI Table 6). 

22

1 We categorized the MPI of a district based on the minimum (MPI = 0.031), maximum (MPI = 0.278), mean (MPI = 0.174)
 and first (MPI = 0. 117) and the third (MPI = 0.214) quantile values.
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1

2 Figure 4: (a) Probability of first- time seasonal migration as a function of the interaction 

3 of variability in the mean maximum temperature in the previous year and the district’s 

4 MPI based on combined data (2013- 2017). (b) Probability of first- time seasonal 

5 migration as a function of the interaction of variability in the total rainfall in the previous 

6 year and the district’s MPI based on combined data (2013- 2017). Refer to SI Table 5 for 

7 the discussion of predictions of Figure 4(b). The confidence intervals are based on fixed 

8 effects only and are calculated assuming a normal distribution (for random effects of 

9 both the models, refer to SI Figure 5 (a, b). District MPI values represent the minimum, 

10 first quantile, mean third quantile and the maximum (in ascending order). Higher MPI 

11 values indicate higher multidimensional poverty in a district. 

12

13 DISCUSSION

14

15 We examine this sensitivity of households in richer districts by examining the differences 

16 in the households and districts. In our study, households in richer districts (MPI<0.174), 
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1 with lower rates of seasonal migration, owned, on average, 20% more agricultural land 

2 (2.93 ± 4.81 acres) and 80% more irrigated land (1.18 ± 3.53 acres) than households in 

3 poorer districts (MPI≥ 0.174; total land: 2.42 ± 4.31 acres; irrigated land: (0.66 ± 1.93 

4 acres), indicating a larger occupational focus on agriculture. Irrigation is mainly used for 

5 a market-oriented second crop in winter, predominantly wheat (63). Previous studies in 

6 India demonstrate that households with agricultural assets and technologies, including 

7 irrigation, are more likely to have agriculturally focused occupations and thus, less likely 

8 to engage in occupational diversification, such as migration, for income-smoothing 

9 (56,70). This may be because households with larger land ownership have higher labor 

10 requirements and thus, are less likely to undertake seasonal migration for work (13). We 

11 find evidence of this relationship between agriculture and migration amongst this socio-

12 economically vulnerable population as on average, richer districts have half the 

13 proportion of households with first-time migrants compared to poorer districts. 

14

15 We interpret our results to suggest that the sensitivity of forest-fringe households to 

16 climate is mediated by their agricultural focus, much like households in non forest-fringe 

17 rural areas in India (7) and other countries such as Mexico (21) or Bangladesh (22). Our 

18 results align with that of Sedova and Kahkuhl (2020) who demonstrate that in India 

19 negative precipitation anomalies only significantly impact agricultural households 

20 inducing migration to urban centres, and not non-agricultural households with already 

21 higher rates of migration. Such similarity in the sensitivity of agricultural households in 

22 forest-fringe and non forest-fringe villages to climatic variability suggests that a forest- 

23 fringe household’s focus on agriculture can reduce its dependence on forest products 
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1 drastically (74). In such a case, the proximity of a household to the forest becomes less 

2 relevant for their income (59,74). Our study, thus, illustrates the differential sensitivity of 

3 households to climatic variability, based on their occupational focus, in this socio-

4 economically vulnerable population in our study region. 

5

6 A commonly proposed pathway out of poverty and a means to tackle climatic variability 

7 is agricultural intensification and transformation. In India, earlier policies based on the 

8 Green Revolution, have allowed central Indian states like Madhya Pradesh and 

9 Maharashtra to increase agricultural yields by 29% and 21% respectively in recent 

10 decades (63). However, the rate of gains from agricultural intensification has slowed in 

11 recent years, and may pose a challenge for agricultural households in a future of 

12 uncertain climate (56,63). Prior evidence from the CIL suggests that commonly grown 

13 crops, such as rice and wheat, are highly sensitive to temperature increases (68). Climate 

14 projections for the CIL indicate variation in rainfall patterns (38), but a statistically 

15 significant increase in annual temperatures (75). Policies in the last decade, such as Kisan 

16 Credit Card and the Pradhan Mantri Krishi Sinchayee Yojna have improved farmers’ 

17 access to fertilisers, seeds, credit and improved irrigation (26,76). However, given the 

18 recent increased dependence on irrigation, parts of central India have depleted their 

19 groundwater (63,64) and could face severe water shortages and reductions in crop 

20 production as early as 2025 (64). Thus, investments in agricultural intensification may 

21 not serve as a reliable pathway out of poverty in the future as it has in the past. 

22
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1 Research from other parts of the world provides much evidence of higher reliance on 

2 agriculture once migrants begin to accumulate wealth from several years of migration 

3 (27,29). Give our findings, we postulate that in the near future if households in poorer 

4 districts follow the agricultural path to poverty reduction as some richer districts have 

5 done (63), it may reduce their seasonal migration but make households in poorer districts 

6 more vulnerable to climatic variability in the long run. 

7

8 CONCLUSION

9

10 This study enhances our understanding of livelihood strategies amongst a socio-

11 economically vulnerable population in central India, one that other analyses based on 

12 large datasets of India’s diverse population do not explicitly consider. Households in 

13 poorer districts, with a higher prevalence of seasonal migration overall, are less sensitive 

14 to climatic variability in comparison to households in richer districts. We attribute the 

15 sensitivity of households in richer districts to climatic variability to an occupation focus 

16 on agriculture, specifically adoption of common agricultural intensification practices, 

17 which promote irrigation, without accounting for long-term climate resilience. Other non-

18 forest fringe communities in India have expanded and intensified agriculture to increase 

19 incomes, reduce dependence on migration and move out of poverty (56).  A similar 

20 pathway could occur for the forest-fringe population in our study region, which could 

21 reduce dependence on migration but make households more vulnerable to climatic 

22 variability. Our findings contribute to a growing body of evidence about the complex 
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1 relationship between temperature and precipitation anomalies and urban-bound migration 

2 from rural landscapes (5,7,12,21,22,77).

3

4 Quantifying the sensitivity of households to climatic variability assists NGOs, managers 

5 and policymakers in targeting policies to alleviate poverty and reduce dependence on 

6 migration amongst this historically socio-economically vulnerable population. Given our 

7 findings, alternative livelihood options (e.g.: Mahatma Gandhi National Rural 

8 Employment Guarantee Act or non-extractive forest-based livelihoods such as eco-

9 tourism) other than intensified agriculture, may be more appropriate for alleviating 

10 poverty for building climate resilience amongst forest-fringe populations in poorer 

11 districts. Given the large population in India, providing livelihood options at the origin, 

12 which compete financially with livelihoods in cities, may give household members more 

13 agency in their decision to migrate and also reduce the population pressure on cities. 

14 Additionally, policies promoting climate-resilient agriculture in poorer districts may 

15 ensure those households increasing their agricultural activities and investments are 

16 adequately capacitated to face climatic variability. Similarly, policies promoting climate-

17 resilient agriculture in agricultural households in richer districts could reduce dependence 

18 on migration in times of extreme climatic variability. 

19

20 This study has several limitations. Our statistical model is not a true panel model. We 

21 acknowledge that the structure of our data restricts our ability to make more accurate 

22 predictions of the sensitivity of households to climatic variability. Further, unlike a panel 

23 dataset, we are unable to quantify the changes in socio-economic characteristics 
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1 associated with migration over a period of time. Given the high correlation between 

2 temperature and precipitation indices, our statistical methods are unable to disentangle 

3 the individual impact of each of them on migration in the CIL. This study is a snapshot of 

4 five years. Thus, tracking the relationship of climatic variability and local socio-

5 economic conditions with seasonal migration over a longer period of time will provide a 

6 more accurate picture of this livelihood diversification strategy for socio-economically 

7 vulnerable populations. Lastly, unlike some studies on forest-dependent populations (78), 

8 without a quantification of forest dependence at different time steps, we cannot deduce 

9 whether forest-based livelihoods, such as non-timber forest product extraction, provided a 

10 ‘cushion’ in years of higher climatic variability. Moreover, our survey design limits our 

11 ability to understand the differences climatic variability has on forest- fringe and non 

12 forest-fringe populations. A comparison of the two populations may provide more insight 

13 into how different populations in India, based on their immediate environment, are 

14 coping with climatic variability.

15

16

17

18

19

20

21

22

23
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