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Problem. To find all continuous functions f defined on the
set of real numbers and taking real values, with the following
two properties:

• f (0) = 1;
• f (u+ v+ 1) = f (u) + f (v) for all real numbers u, v.

By simple experimentation, we find that the function
f (x) = x+ 1 satisfies all the given conditions. Could it be
the only solution? Let us explore. We consider various classes
of numbers.

Case 1: x is a positive integer. We make repeated use of the
property f (u+ v+ 1) = f (u) + f (v) for all real numbers
u, v. The substitution u = 0, v = 0 gives:

f (1) = f (0 + 0 + 1) = f (0) + f (0) = 1 + 1 = 2.

We see that f (1) = 1 + 1. Next, the substitution
u = 1, v = 0 gives:

f (2) = f (1 + 0 + 1) = f (1) + f (0) = 2 + 1 = 3.

We see that f (2) = 2 + 1.

Now assume that f (k) = k+ 1 for some positive integer k.
The substitution u = k, v = 0 gives:

f (k+ 1) = f (k+ 0 + 1) = f (k) + f (0)
= (k+ 1) + 1 = k+ 2.

Using the principle of induction, it follows that f (x) = x+ 1
for every positive integer x.

Case 2: x is a negative integer. Let x be a negative integer,
and let y = −x. Since y is a positive integer, we have
f (y) = y+ 1. The substitution u = x, v = y gives:

f (1) = f (x+ y+ 1) = f (x) + f (y)
= f (x) + (y+ 1) = f (x)− x+ 1,

hence 2 = f (x)− x+ 1, i.e., f (x) = x+ 1. Therefore
f (x) = x+ 1 for every negative integer x.
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Functional equations occur 
quite frequently in problem 
contests. Typically they 
specify certain properties 
of an unknown function, 
on the basis of which we 
are supposed to find that 
function. If the answer is 
unique, it means that those 
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particular function. We 
explore one such problem in 
this article.
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Case 3: x is a non-integral rational number. We
first show that for any rational number x, the
following are true:

(1) f (x+ 1) = f (x) + 1. Equivalently:
f (x− 1) = f (x)− 1.

(2) f (−x) = 2 − f (x).

(3) For any positive integer m,

f (mx) = mf (x)− (m− 1).

We justify these as follows.

f (x+ 1) = f (x+ 0 + 1) = f (x) + f (0)
= f (x) + 1.

Next:

2 = f (x+ (−x) + 1) = f (x) + f (−x),
∴ f (−x) = 2 − f (x).

Finally, the relation f (mx) = mf (x)− (m− 1) is
certainly true for m = 1:

f (x) = 1 · f (x)− (1 − 1).

Assume that the relation
f (mx) = mf (x)− (m− 1) is true for m = k,
where k is some positive integer. Then

f (kx) = kf (x)− (k− 1).

Therefore:

f ((k+ 1)x) = f (kx+ x)
= f (kx+ (x− 1) + 1)
= f (kx) + f (x− 1)
= kf (x)− k+ 1 + f (x)− 1
= (k+ 1)f (x)− k
= (k+ 1)f (x)− (k+ 1 − 1).

By the principle of induction, we conclude that
f (mx) = mf (x)−m+ 1 for all positive integers m.

Now let x = p/q where p and q are integers,
q > 0. Then qx = p is an integer, therefore

f (qx) = qx+ 1.

But f (qx) = q f (x)− q+ 1. Hence:

q f (x)− q+ 1 = qx+ 1.

Solving for f (x), we obtain:

f (x) = x+ 1.

It follows that f (x) = x+ 1 for all rational
numbers x.

Case 4: x is a real but irrational number. Now
let x be a real number. Then there exists a
sequence x1, x2, x3, . . . of rational numbers such
that limn→∞ xn = x. Since (by supposition) f is a
continuous function,

lim
n→∞

f (xn) = f (x).

But f (xn) = xn + 1 for all n. It follows that

lim
n→∞

f (xn) = x+ 1.

Therefore f (x) = x+ 1 for all real numbers x.

Conclusion. There is precisely one function f
satisfying the given conditions: f (x) = x+ 1 for
all real numbers x.
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