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In this note, we establish an unexpected property of the
centroid of a triangle.

Given any triangle ABC, let P be an arbitrary point lying
within the triangle. Drop perpendiculars PD, PE, PF to the
sides BC, CA, AB respectively. We ask: For which point P
does the product PD · PE · PF take its largest possible value?

We shall show that for any triangle, PD · PE · PF takes its
maximum value when P lies at the centroid of the triangle.
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For any point P within the triangle, let x, y, z be the distances from P to BC, CA, AB respectively (x = PD,
y = PE, z = PF). To start with, let x be kept constant. The set of points P such that x has any given fixed
value is a segment QR parallel to side BC and at distance x from it (see Figure 1). Let u and v be the
perpendicular distances from Q to AC and R to AB, respectively. Let L be the length of QR. Let PR = t;
then QP = L− t.

Using similarity we have:

y
u
=

PR
QR

, ∴ y =
tu
L
,

z
v
=

QP
QR

, ∴ z =
(L− t)v

L
.

For any given fixed value of x, both u and v are constants, as is L. Hence:

yz = t(L− t)× some constant which depends only on x.

The variable component on the right side is the quadratic expression t(L− t), which achieves its maximum
value when t = L/2, i.e., when P lies at the midpoint of QR. (Recall that if the sum of two non-negative
numbers is a positive constant, then their product takes its largest value when the two numbers are equal.)

So, for each value of x, the optimal location of P is the midpoint of QR. That is, for each value of x, the
optimal location of P lies on the median of the triangle through vertex A.

By symmetry, the optimal location of P must also lie on the medians through vertices B and C. This
implies that the optimal location is the centroid of the triangle.

Since the perpendicular distance of the centroid from each side is 1/3 of the corresponding altitude, it
follows that the largest possible value of the product of perpendicular distances from the sides is equal to
1/27 of the product of the three altitudes. �
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