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Quadratic equations form an important
topic in most school curricula and students
are exposed to problems of the following types:

(a) Finding the roots;

(b) Determining the nature of roots without explicitly
finding them;

(c) Determining the range of values of a quadratic
expression or a rational function having a quadratic
numerator or denominator;

(d) Word problems where the quadratic equation has to
be formulated and then solved.

More often than not the problems on quadratic equations
discussed in the school curricula can be solved by a routine
application of a handful of formulae and laborious algebraic
manipulations. As a result the topic may appear to be
charmless to the students and teachers alike. The goal of this
article is to debunk this notion by way of illustrative
examples that will bring the adventurous side of quadratic
equations to the fore.

The first example is a word problem formulated as a simple
game being played by two friends, Akbar and Birbal.
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Example 1. Akbar writes down the quadratic equation

ax2 + bx+ c = 0

with positive integer coefficients a, b, c. Then Birbal changes one, two or all three ‘+’ signs to ‘−’. Akbar
wins if both roots of the (modified) equation are integers. Otherwise (if there are no real roots or at least
one of them is not an integer), Birbal wins. Can Akbar choose the coefficients in such a way that he will
always win?

Solution. How do we start? There are eight possible equations (including the one written by Akbar) which
can be divided into two groups, P and N, according to whether the sign of a is “+” or “−”; each group has
four equations. Note that every equation in N may be obtained by multiplying by −1 an equation in P,
and distinct equations in N are obtained from distinct equations in P. Thus it suffices to deal with the
equations in any one of the two groups. We choose that group to be P. So, Akbar has to choose the
coefficients a, b, c in such a way that all the four equations

(i) ax2 + bx+ c = 0

(ii) ax2 + bx− c = 0

(iii) ax2 − bx+ c = 0

(iv) ax2 − bx− c = 0

have integer roots. Since the sum of the roots and their product for the equations listed above are ±b/a
and ±c/a, to ensure that the roots are integers, it is wise for Akbar to choose a = 1. Observe that the roots
of equations (iii) and (iv) differ from those of (i) and (ii), respectively, by a factor of −1. Thus, ensuring
that the following equations have integer roots,

x2 + bx+ c = 0,

x2 + bx− c = 0

is enough for Akbar to win the game.

Playing with small integers, Akbar will sooner or later obtain the winning quadratics

x2 + 5x+ 6 = 0 and x2 + 5x− 6 = 0.

If Akbar decides to continue his search with vigour and enthusiasm, he will obtain several possible choices
for the pair (b, c) that will guarantee his win against Birbal. To list a few:

(b, c) = (13, 30), (17, 60), (25, 84), . . . .

But are there finitely many such pairs or infinitely many? This question is answered below. �
Proposition. Let the positive integers b and c be such that both the quadratic equations

x2 + bx+ c = 0, x2 + bx− c = 0

have integer roots. Then there exists a right-angled triangle with hypotenuse b and area c.

Proof of proposition. As both quadratics have integer roots, both b2 − 4c and b2 + 4c are perfect squares. Let

x2 = b2 − 4c, y2 = b2 + 4c,

where x, y are positive integers. Then

b2 =
y2 + x2

2
=

(
y+ x

2

)2

+

(
y− x

2

)2
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and
c =

1
2

(
y+ x

2

)(
y− x

2

)
.

Observe that both x2 and y2 have the same parity because their difference is even, and y > x. Thus x and y
have the same parity, hence (y+ x)/2 and (y− x)/2 are positive integers, and indeed b is the hypotenuse
of the right-angled triangle with sides

y− x
2

,
y+ x

2
,

√
y2 + x2

2
whose area is c. (The reader may verify that the three numbers are the sides of a non-degenerate triangle.)

So Akbar can choose any Pythagorean triple (r, s, t) and set b = t, c = 1
2 rs to ensure his triumph over

Birbal. Since there are infinitely many Pythagorean triples, Akbar has infinitely many pairs (b, c) at his
disposal. �
The next example involves permutation of the coefficients of a quadratic trinomial.

Example 2. Three nonzero real numbers a, b and c are given. We are told that if they are written in any
order as the coefficients of a quadratic trinomial, then each of these trinomials has a real root. Does it
follow that each of these trinomials has a positive root?

Solution. Since each quadratic trinomial has real coefficients, if each has a real root, then each must have
two real roots. Suppose there is one trinomial which does not have a positive root. Without loss of
generality, let it be ax2 + bx+ c. Since c ̸= 0, we know that 0 is not a root of this trinomial. Let −u and
−v be its roots where u > 0 and v > 0. Then

ax2 + bx+ c = a(x+ u)(x+ v),

and we notice that the signs of b = a(u+ v) and c = auv are the same as that of a. Therefore, without loss
of generality, we may assume that a, b, c are positive.

But according to the problem, each of ax2 + bx+ c, bx2 + cx+ a and cx2 + ax+ b has two real roots.
Therefore

b2 ≥ 4ac, c 2 ≥ 4ab, a2 ≥ 4bc.
These inequalities lead to

(abc)2 ≥ 64(abc)2,
an absurd result unless abc = 0, which is impossible. Thus each of the six quadratic trinomials has a
positive root. �
Here is a teaser for the reader.

Problem. Let a, b, c be three integers in arithmetic progression. If the roots of the quadratic equation
ax2 + bx+ c = 0 are integers, find the ratio a : b : c.

Using the Intermediate Value Theorem. Sometimes it is easier to establish the existence of a real root of a
quadratic trinomial by exhibiting two real numbers at which it has opposite sign, rather than by explicitly
computing the discriminant and showing that it is non-negative. The existence of a real root then follows
from the Intermediate Value Theorem for a continuous function.The following example highlights this
fact.
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Example 3. Suppose P1, P2, P3 are quadratic trinomials with positive leading coefficients and real zeros.
Show that if each pair of them has a common zero, then the trinomial P1 + P2 + P3 also has real zeros.

Solution. Let the common zero of P1 and P2 be β, and that of P2 and P3 be γ. Then the zeros of P2 are β
and γ, and if α is the other zero of P1, then the zeros of P3 are γ and α. Without loss of generality we may
assume that α ≤ β ≤ γ. So P = P1 + P2 + P3 can be written as

P(x) = a1(x− α)(x− β) + a2(x− β)(x− γ) + a3(x− γ)(x− α), (1)

where ai > 0 for i = 1, 2, 3. Then

P(α) = a2(α − β)(α − γ), P(β) = a3(β − γ)(β − α), P(γ) = a1(γ − α)(γ − β).
Observe that P(α) ≥ 0 ≥ P(β) and P(β) ≤ 0 ≤ P(γ). This shows that P has a real zero between α and
β, and another real zero between β and γ. �
The following example is from the Belarusian Mathematical Olympiad and it illustrates the level of
challenge that a problem on quadratic equation can have.

Example 4. We call two quadratic trinomials P(x) = x2 + ax+ b and Q(x) = x2 + cx+ d friendly if each
of them has distinct real roots, and if x1 < x2 are the roots of P(x) and x3 < x4 are the roots of Q(x), then
x1 + x3 and x2 + x4 are the roots of the quadratic trinomial x2 + (a+ c)x+ (b+ d). Let M be the set of
pairwise friendly trinomials consisting of at least three trinomials. Prove that 0 is a root of every trinomial
from the set M.

Solution. Let P(x) = x2 + ax+ b, Q(x) = x2 + cx+ d and R(x) = x2 + ex+ f be three pairwise friendly
trinomials in M. Suppose x1 < x2 are the roots of P(x), x3 < x4 are the roots of Q(x), and x5 < x6 are the
roots of R(x). Then x1 + x3, x2 + x4 are the roots of

P(x) + Q(x)− x2 = x2 + (a+ c)x+ (b+ d),

x3 + x5, x4 + x6 are the roots of

Q(x) + R(x)− x2 = x2 + (c+ e)x+ (d+ f),

and x5 + x1, x6 + x2 are the roots of

R(x) + P(x)− x2 = x2 + (e+ a)x+ (f+ b).

Observe that
b+ d = x1x2 + x3x4 = (x1 + x3)(x2 + x4),

whence
x1x4 + x2x3 = 0.

Similarly from
d+ f = x3x4 + x5x6 = (x3 + x5)(x4 + x6)

and
f+ b = x5x6 + x1x2 = (x5 + x1)(x6 + x2)

we obtain
x3x6 + x4x5 = 0

and
x1x6 + x2x5 = 0.
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From the above we obtain:

x1x4 = −x2x3, x3x6 = −x4x5, x2x5 = −x1x6,

which lead to
(x1x4)(x3x6)(x2x5) = (−x2x3)(−x4x5)(−x1x6),

or:
x1x2x3x4x5x6 = 0.

Therefore at least one of x1, x2, x3, x4, x5, x6 is zero. Moreover, since the roots of each of P(x), Q(x) and
R(x) are distinct, at most one root of each can be zero. Suppose x1 = 0. Then x2 ̸= 0 and it follows that
x3 = 0. Therefore x4 ̸= 0. From the above we get x5 = 0 and hence x6 ̸= 0. This shows that 0 is a root of
each of P(x), Q(x), and R(x). The reader may verify that we would have reached the same conclusion if we
had assumed that xk = 0 for k = 2, 3, 4, 5, 6 instead of x1 = 0.

The next example is from the Russian Mathematical Olympiad.

Example 5. A quadratic polynomial f (x) = ax2 + bx+ c has no real roots. It is given that b is a rational
number, and exactly one of c and f (c) is a rational number. Is it possible for the discriminant of f (x) to be
a rational number?

Solution. Suppose c is a rational number. Then, by hypothesis, f (c) = c (ac+ b+ 1) is irrational. Since b
and c are rational, a must be irrational. Therefore the discriminant D = b2 − 4ac is irrational.

Suppose f (c) is rational but c is irrational. Note f (c) ̸= 0, since f does not have any real root. Then
(ac+ b+ 1) ̸= 0 and is irrational. But b is rational. Therefore ac is irrational and hence D = b2 − 4ac is
irrational.

Our last example is a problem with a simple statement which can be generalised to a much deeper result.

Example 6. Let a and b be positive integers such that n2 + 2an+ b is a perfect square for all integers n.
Then the quadratic trinomial x2 + 2ax+ b is the square of a linear polynomial.

Solution. Let f (x) = x2 + 2ax+ b. Then f (−a) = b− a2 is a perfect square. Let c be such that
b− a2 = c 2. If c = 0 we are done. We will prove that under the given hypothesis c cannot be nonzero.
Suppose c ̸= 0. Then

f (c− a) = c 2 + b− a2 = 2c 2.

But 2c 2 cannot be a perfect square unless c = 0, as the exponent of 2 in 2c 2 is odd if c ̸= 0. Therefore
c = 0, implying b = a2 and

f (x) = (x+ a)2.

The general statement illustrated by the above example is the following:

Proposition. If P(x) is a polynomial with integer coefficients such that for every integer n, P(n) is a kth power
for some positive integer k, then there exists a polynomial Q(x) with integer coefficients such that
P(x) = (Q(x))k.

We hope that the reader will find this escapade involving quadratics stimulating enough to plunge into
another on his or her own.
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