Trigonometric Proof of Ptolemy's Theorem

K SASIKUMAR

In this short note, we provide a trigonometric proof of Ptolemy's theorem.

Theorem (Ptolemy). If quadrilateral *ABCD* is cyclic then $AB \cdot CD + BC \cdot AD = AC \cdot BD$.

Figure 1.

Proof. Let

$$\angle CAB = \angle CDB = x,$$
 $\angle ABD = \angle ACD = y,$ $\angle DAC = \angle DBC = z,$ $\angle ACB = \angle ADB = w.$ Also let $AB = a$, $BC = b$, $CD = c$, $DA = d$, $AC = e$, $BD = f$.

Keywords: Ptolemy's theorem, quadrilateral, cyclic, sine rule

By the sine rule, since quadrilateral ABCD is cyclic, we have

$$a/\sin w = d/\sin y = f/\sin(y+w),$$

$$b/\sin x = a/\sin w = e/\sin(x+w),$$

$$c/\sin z = b/\sin x = f/\sin(x+z),$$

$$d/\sin y = c/\sin z = e/\sin(y+z).$$

From the second and third equalities we get:

$$\frac{ac}{\sin w \cdot \sin z} = \frac{ef}{\sin(x+w) \cdot \sin(x+z)},$$

and from the third and fourth equalities we get:

$$\frac{bd}{\sin x \cdot \sin y} = \frac{ef}{\sin(x+z) \cdot \sin(y+z)}$$
$$= \frac{ef}{\sin(x+z) \cdot \sin(x+w)},$$

since $x + y + z + w = \pi$ and $\sin(\pi - u) = \sin u$ for any angle u. Therefore:

$$\frac{ac}{ef} = \frac{\sin z \cdot \sin w}{\sin(x+w) \cdot \sin(x+z)},$$
$$\frac{bd}{ef} = \frac{\sin x \cdot \sin y}{\sin(x+z) \cdot \sin(x+w)}.$$

Therefore:

$$\frac{ac+bd}{ef} = \frac{\sin z \cdot \sin w + \sin x \cdot \sin y}{\sin(x+w) \cdot \sin(x+z)}$$

$$= \frac{\cos(z-w) - \cos(z+w) + \cos(x-y) - \cos(x+y)}{\cos(z-w) - \cos(2x+z+w)}$$

$$= \frac{\cos(z-w) + \cos(x+y) + \cos(x-y) - \cos(x+y)}{\cos(z-w) + \cos(x-y)}$$

$$= 1 \qquad \text{(repeatedly using } x+y+z+w=\pi \text{)}.$$

Therefore ac + bd = ef, or $AB \cdot CD + BC \cdot AD = AC \cdot BD$.

SASIKUMAR K is presently working as a PG Teacher in Mathematics at Jawahar Navodaya Vidyalaya, North Goa. He completed his M Phil under the guidance of Dr.K.S.S. Nambooripad. Earlier, he worked as a maths Olympiad trainer for students of Navodaya Vidyalaya Samiti in Hyderabad. He has research interests in Real Analysis and Commutative Algebra. He may be contacted at 112358.ganitham@gmail.com.