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A theorem on Facebook
It’s very likely that you have a Facebook account, and of course, you 
have many friends on Facebook. If X is your friend on Facebook, 
then you are X’s friend on Facebook too. But it’s possible that Y is X’s 
friend and not yours. Still, I am sure you and X have many common 
friends, forming a trio of friends. Now, here is a question for you.

What is the smallest number n of people on Facebook such that there 
is definitely a trio among them, either all of whom are friends with 
each other, or none of whom are friends with each other?

With three people, say A, B and C, it is easy that we will not have this 
property: let A and B be friends, neither of whom are friends with 
C. What about four people, A, B, C and D? Again it is easy: make A 
and B friends, C and D friends, and no more. In both these case the 
desired trio is not to be found. 

The Artist of  
Problem-Posing
Notes from a small suitcase
Paul Erdős has been described as one of the most universally adored mathematicians 

of all time. No mathematician prior to him or since has had quite the lifestyle he 

adopted: the peripatetic traveller living out of a suitcase, moving from one friend’s 

house to another for decades at a stretch, and all the while collaboratively generating 

papers; no one has had quite the social impact he has had, within the community of 

mathematicians. This article offers a glimpse of his life and work.

R. Ramanujam

Paul Erdős
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When we have five people, it is a little more 
difficult, but a picture can help think about it.  
Let us have points denoting the 5 persons; draw 
a red line connecting them to denote that they 
are friends on Facebook, and a blue line between 
them to denote that they are not. Now a red 
pentagon with the persons on vertices and blue 
lines to ‘opposite’ vertices (as in Figure 1) should 
convince you that we can indeed have a situation 
without the desired property. 

Now to six. Take some time off now to draw 
pictures like the above. The hexagon with its 
diagonals does not help; while we get many 
interesting pictures, we get none that works like 
the one with five vertices. At this point, we start 
suspecting that six might indeed be the smallest 
number we seek. But then we need a proof that 
among any six persons on Facebook, we have a 
trio, either all of whom are friends, or not-friends. 

Call the newcomer F . We first observe that we 
already know something about F !

Claim. Among the other five persons, there are at 
least three among them such that F is a friend of 
all three, or F is friends with none of the three.

Why? Suppose not. Let us argue with reference to 
a picture like the one we drew earlier; see Figure 
2. We focus on the ‘lines’ coming out from F . Each 
line is red or blue. Since there are five such lines, 
one colour occurs three times or more. Whichever 
that colour is, we get the three persons we want. 
(If this colour is red, then the three persons the 
lines connect to are friends of F , else they are 
non-friends.)

Nice. Suppose that the three persons identified 
in the previous step are A, B, C. (It could be any 
three; we have renamed them as A, B, C.) Their 
relationship with F is the same: all friends or all 
non-friends. Suppose they are all friends of F . 
Now if any two of A, B, C are friends with each 
other, these two together with F form a trio of 
friends. And if no two among A, B, C are friends 
with each other, then A, B, C form a trio of non-
friends! Either way we get the trio we need.

Please check that all possible cases can be 
disposed of in a similar way. So we have proved a 
Facebook Theorem that is valid for any six of the 
millions of members who use that site, knowing 
nothing at all about them! 

The picture that we drew was a graph, with edges 
connecting pairs of vertices. We used two kinds 
of edges, red and blue. We can call this an edge-
colouring of the graph with two colours. When 
every pair of vertices has an edge between them, 
we call it a complete graph. A complete graph on n 
vertices is denoted by Kn . (So K2 is just an edge, K3 
is a triangle, and K4 is a quadrilateral with its two 
diagonals.)  

In this language, what we showed was the 
following: if each edge of K5 is coloured red or 
blue, then a monochromatic K3 may not get 
created, but if each edge of K6 is coloured red or 
blue, then a monochromatic K3 necessarily does 
get created. (‘Monochromatic’ means that all 
edges have the same colour.) 

The critical number 6 is an example of a Ramsey 
number (named after the mathematician and 
logician Frank Plumpton Ramsey) of a graph, 
the minimum number of vertices needed to 
force a monochromatic subgraph inside it. More 
rigorously, given any two numbers s and t, the 

non-friends
friends

Figure 1: Pentagon with ‘red’ edges, ‘blue’ diagonals: 
no trio of the desired kind

Figure 2: Whom is F friends with? 
This figure shows one of many possibilities.
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Ramsey number R2(s, t) is the smallest integer m 
satisfying the property that if the edges of Km are 
coloured red or blue, then no matter which way it 
is done there is either a subgraph Ks with all red 
edges, or a subgraph Kt with all blue edges. With k 
colours, we can similarly speak of Rk(s, t). What we 
showed above was: R2(3, 3) = 6. 

Why should anyone care about Ramsey numbers? 
For one reason, finding them is extremely hard! 
Only a handful are known, and Table 1 lists all the 
known Ramsey numbers of the form R2(s, t). 
You will find it a nice challenge to show that  
R2(3, 4) = 9. 

In the absence of any practical algorithm for 
computing exact values of Ramsey numbers, 
a great deal of research effort has been 
concentrated on obtaining bounds instead.  
For diagonal Ramsey numbers, i.e., Ramsey 
numbers of the form R2(s, s), some bounds are 
known. For instance, it can be shown without too 
much difficulty that R2(s, s) ≤ 4s, an upper bound. 
Getting lower bounds is much harder.

 

In 1947, the mathematician Paul Erdős 
(pronounced Air-dsh) proved this remarkable 
theorem

Theorem 1. Let k, n be positive integers such that 

  . Then R2(k, k) is greater than n.

In order to show that R2(k, k) > n, it suffices to 
show that there exists at least one colouring of the 
edges of Kn which results in no monochromatic Kk. 
Erdős showed this probabilistically! The details 
are given in Figure 4. 

Table 1: All the known Ramsey numbers

Figure 3: Paul Erdős having a chuckle. 
Source: http://24.media.tumblr.com/tumblr_

maobc7dXYQ1qipuzxo1_1280.jpg

Consider an edge blue/red colouring of Kn in 
which the colour for each edge is assigned 
randomly and independently, with probability 
1/2 for each. 

How many copies are there of Kk in this 
configuration? Clearly as many as there are 
subsets of size k in the set {1, 2, 3, . . . , n}, i.e., 

n
k  . What is the probability that any particular 

copy is monochromatic? Each of the k
2  edges 

in the chosen Kk gets a particular colour with 
probability 1/2, and there are two colours to 
choose from, so the probability is equal to 

Hence the probability that there exists a 
monochromatic Kk is at most 

(For, the probability of a union of several 
events is at most the sum of the probabilities 
of the individual events.) 

This quantity is less than 1 by the 
assumption of the theorem, hence the 
probability that there exists a colouring 
with no monochromatic Kk is greater than 0. 
Therefore, there exists a colouring with no 
monochromatic Kk , and we are done.

Figure 4: A random proof!

Erdős’s probabilistic proof of Theorem 1.

s 3 3 3 3 3 3 4 4
t 4 5 6 7 8 9 4 5

R2(s, t) 9 14 18 23 28 36 18 25

.

.
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The master who could count by  
tossing coins
Erdős was 33 years old when he proved 
Theorem 1. This way of proving the existence of 
something by showing that the probability that 
it exists is positive is typically Erdős’s. He loved 
the probabilistic method and used it to great 
advantage to solve problems in number theory, 
combinatorics and graph theory. He would set up 
some mechanism for counting the number of ways 
of doing something, compute the probability of an 
event, and show that some mathematical object 
exists. Joel Spencer, who did a lot of work with 
Erdős refers to this as ‘Erdős magic’. 

Erdős could ask questions on counting pretty 
much anything. Consider k points and t lines 
on the plane. We might ask many questions 
concerning them, but here is one of Erdős’s 
questions: What is the maximum number f (k, t) 
of incidences between the points and the lines? 
He conjectured that the points of a square grid 
and a certain set of lines give the optimal order of 
magnitude. This was confirmed only decades later 
by Szemerédi and Trotter, in 1983. 

Here is Erdős proposing a question for the student 
journal Quantum. Let f (n) be the largest integer 
for which there is a set of n distinct points x1, x2, 
... xn in the plane such that for every xi there are 
at least f (n) points xj which are equidistant from 
xi. Determine f (n) as accurately as possible. Is it 
true that f (n) is approximately nє for every є > 0? 
Erdős offered $500 for a proof and ‘much less’ for 
a counterexample. The question was settled in 
1990. 

This was also typical of the Erdős style; he posed 
thousands of problems, and offered prize money 
for solving many of them.

Very early on, Erdős was attracted to number 
theory, but there too he turned to counting orders 
of magnitude. In 1934, when he was 21 years old, 
Erdős heard of Simon Sidon’s work on sequences 
of integers with pairwise different sums. In 1938 
he asked: what is f (n), the maximum number 
of positive integers ai ≤ n such that the pairwise 
products aiaj are all distinct? He answered the 

question by reducing it to a question in  
graph theory. 

Through his questions, Erdős led us in many 
directions that we could not have imagined 
to exist. Here is an example. In 1927 van der 
Waerden published a celebrated theorem, which 
states that if the positive integers are partitioned 
into finitely many classes, then at least one of 
these classes contains arbitrarily long arithmetic 
progressions. In 1936, Erdős and Turàn realised 
that it ought to be possible to find arithmetic 
progressions of length k in any ‘sufficiently dense’ 
set of integers, which would show that the par- 
titioning in van der Waerden’s theorem was, in a 
sense, a distraction. The conjecture was proved by 
Szemerèdi in 1974. Not only is it a very difficult 
proof, but the regularity lemma that he used in the 
proof has become a central tool in graph theory 
and theoretical computer science. (Szemerèdi was 
awarded the prestigious Abel prize last year.) 

Erdős made another related conjecture, far more 
famous and still open.  Let X be any set of positive 
integers such that the series Σxєx  diverges. Then X 
contains arbitrarily long arithmetic progressions. 
Note that the set of primes is an example of such 
a set. The general question is open (as noted), but 
Green and Tao showed in 2004 that the primes 
contain arbitrarily long arithmetic progressions. 
(Terence Tao was awarded the Fields prize in 
2006.)

A question both deep and 
profound

Is whether a circle is round.
In a paper of Erdős
Written in Kurdish

A counter example is found.
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All this is very deep mathematics, but what 
about the fun part? Often, it was recreational 
mathematics that led Erdős to the deep end. Here 
is an example. A distinct pair of numbers (m, n) 
is said to be amicable if the sum of the proper 
divisors of m is n, and vice versa. The smallest 
such pair is (220, 284). It is still unknown if there 
are infinitely many amicable pairs, but Erdős 
showed that the set of amicable numbers has 
density zero. This means, roughly speaking, that 
they are quite rare.

The man without boundaries
By now the picture of Paul Erdős, the great 
problem solver and problem poser, must have 
taken shape. But he not only posed problems, he 
also sought out people to pose the problems to. 
He offered sums of money as encouragement for 
students to think about problems. Much of this 
money was his own, he gave freely to numerous 
non-mathematical charities and causes as well, 
keeping hardly any money for himself.

When he published his first paper in 1932 Erdős 
was merely 18. He continued to publish until 
2003, almost 7 years after his death as some 
straggling papers continued to be published 
posthumously! He published 1521 papers in 
all, collaborating worldwide with a staggering 
number of mathematicians. How could he do this?

Erdős was prolific because his life was wholly 
devoted to mathematics. He did not have a job, 
a regular place of stay, or more possessions 
than he could carry with him in his two (half 
empty!) suitcases. He travelled from university to 
university, from mathematician to mathematician, 

working until his collaborator was exhausted, 
and then moving on. He did not cultivate human 
contact outside of his mathematical interactions, 
with the exception of his mother, whom he loved 
dearly. He didn’t have to cook, clean or keep 
house; he had a cadre of people who looked after 
him, saw to it that he had food, shelter and, when 
necessary, a visa for his next destination. 

Even the language of Paul Erdős was idiosyncratic. 
To him, children were ‘epsilons’, people ‘died’ 
when they stopped doing mathematics, and 
people ‘left’ when they actually died. He didn’t 
lecture, he ‘preached’, and when he was ready 
to do mathematics, ‘his brain was open’. To him, 
God was the ‘Supreme Fascist’. But there was 
something that was divine for him: he used to 
speak of The Book in which all beautiful theorems 
and proofs was written down; the job of the 
mathematician was only to find them. When 
he found a really elegant argument, he would 
exclaim, “Ah, that’s from The Book!”

Paul Erdős had a hard life. Born in 1913 in 
Budapest, Hungary, he was a child at the time of 
World War I, and the years after the war were 
worse. Jews were not allowed to attend university, 
and Erdős had to pass a national examination in 
1930 before he was exempt from these ‘fascist’ 
rules. He attended the University Pazmany 
Peter in Budapest from 1930 to 1934 and then, 
fleeing the repressive regime in Hungary, went 
to Manchester in England for research. His 
mathematical wanderings began and he worked 
also in Cambridge, London, Bristol and other 
places. 

By 1938 he could no longer safely return to 
Hungary because of Hitler’s control of Austria, and 
Erdős spent a year at the Institute for Advanced 
Study in Princeton University in the USA. After 
a year, he left Princeton, and started wandering, 
university to university, mathematician to mathe- 
matician, and conference to conference. In 1945 
he received word that most of his extended family 
had been killed in Auschwitz and that his father 
had died of a heart attack in 1942. He visited 
Hungary, and spent time in England and the USA. 
But by 1954, he had problems with the USA which 
refused to issue an entrance visa for him, alleging 

Figure 5: Two images of Paul Erdós.   
Source: http://www-history.mcs.st-and.ac.uk/ 

Mathematicians/Erdos.html
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communist sympathies. Eventually his entry 
was eased, after petitions from mathematicians, 
but all this made Erdős sceptical of nations and 
boundaries.

Erdős collaborated with 509 authors, nearly 
twice as many as the next most well connected 
mathematician. He collaborated so much that 
the most accepted measure of connectedness 
is the Erdős number (EN): the simple distance 
connecting a person with Erdős by co-authorship. 
Erdős himself has EN zero; the lucky 509  
co-authors have EN one, and those who have co-
written an article with one of this group has EN 
two (there are 6984 of them), and so on. 1

If ever there was a mathematician who knew no 
boundaries, national or subject-wise, it was Paul 
Erdős, the ultimate problem solver and problem 
poser.

Further reading

yy A. Baker, A. Bollobas and A. Hajnal, 
A Tribute to Paul Erdős, Cambridge 
University Press, 2012.

yy Deborah Helligman, The Boy Who Loved 
Math: The Improbable Life of Paul Erdős, 
Roaring Brook Press, 2013.

yy Paul Hoffman, The man who loved only 
numbers, Hyperion, 1999. 

yy Bruce Schechter, My Brain is Open: The 
mathematical journey of Paul Erdős, Simon 
and Schuster, 2000.

R Ramanujam is a researcher in mathematical logic and theoretical computer science at the Institute of 
Mathematical Sciences, Chennai. He has an active interest in science and mathematics popularization 
and education, through his association with the Tamil Nadu Science Forum. He may be contacted at 
jam@imsc.res.in.

A well-known quote, and a favourite among mathematicians, is:

A third Hungarian, 
Paul Turán, added the 
following:

Weak coffee 
is suitable 
only for 
lemmas.

A mathematician is a machine 
for turning coffee into 
theorems

This meta-theorem has been widely 
ascribed to Paul Erdős, but most likely 

it originated from another 
Hungarian mathematician, 
Alfréd Rényi, who was a long-

time friend and colleague 
of Erdős’s.

1.  The author of this article is proud to be among the 
     26,422 who have an Erdős number of three. 


