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Set theory revisited

As easy as PIE
Principle of Inclusion and Exclusion – Part 2

In Part–I of this article we solved some problems using the PIE or the ‘Principle
of Inclusion and Exclusion’. We saw how the law |𝐴𝐴 𝐴 𝐴𝐴| 𝐴 |𝐴𝐴| 𝐴 |𝐴𝐴| 𝐴 |𝐴𝐴 𝐴 𝐴𝐴|
generali�es, and we used the PIE to �ind a formula for Euler’s totient function
𝜑𝜑𝜑𝜑𝜑𝜑 which counts the number of integers in the set {1, 2, … , 𝜑𝜑𝑁 which are
coprime to 𝜑𝜑. �ow in Part–II we use the PIE to �ind a generali�ation of the
formula connecting the gcd and lcm of two numbers. We also discuss a
problem about a secretary who loves mixing up job offers sent to applicants,
and another problem concerning placement of rooks on a chessboard.

I. The Möbius function
�ou would have noticed in the �irst part of this article ��IE�I� that
the same kind of sum has been coming up repeatedly, in which
terms are alternately positive and negative. A convenient way of
writing such sums is through the use of a function called the
Möbius function, written 𝜇𝜇𝜑𝜇𝜇𝜑 and read aloud as ‘mew of 𝜇𝜇’. It is
de�ined as follows: 𝜇𝜇𝜑1𝜑 𝐴 1, and:
• If 𝜇𝜇 is the product of unequal prime numbers, then 𝜇𝜇𝜑𝜇𝜇𝜑 𝐴 1 if
the number of primes is even, and 𝜇𝜇𝜑𝜇𝜇𝜑 𝐴 𝐴1 if the number of
primes is odd. So 𝜇𝜇𝜑𝜇𝜇𝜑 𝐴 𝐴1 for any prime 𝜇𝜇; 𝜇𝜇𝜑𝜇𝜇𝜇𝜇𝜑 𝐴 1 for any
two unequal primes 𝜇𝜇, 𝜇𝜇; and so on. Here is a more compact
way of writing this: if 𝜇𝜇 is the product of 𝑟𝑟 distinct primes, then
𝜇𝜇𝜑𝜇𝜇𝜑 𝐴 𝜑𝐴1𝜑� . Examples: 𝜇𝜇𝜑𝜇𝜑 𝐴 𝐴1, 𝜇𝜇𝜑1𝜇𝜑 𝐴 1, 𝜇𝜇𝜑𝜇𝜇𝜑 𝐴 𝐴1.

• If 𝜇𝜇 is divisible by the square of any prime number, then
𝜇𝜇𝜑𝜇𝜇𝜑 𝐴 𝜇. Examples: 𝜇𝜇𝜑𝜇𝜑 𝐴 𝜇, 𝜇𝜇𝜑12𝜑 𝐴 𝜇.
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Using this function, an expression such as

𝑁𝑁 − �𝑁𝑁𝑝𝑝 + 𝑁𝑁
𝑞𝑞 + 𝑁𝑁

𝑟𝑟 +⋯�

+ � 𝑁𝑁
𝑝𝑝𝑞𝑞 + 𝑁𝑁

𝑞𝑞𝑟𝑟 +
𝑁𝑁
𝑝𝑝𝑟𝑟 +⋯� −⋯

can be written compactly as

�
���

𝜇𝜇𝜇𝜇𝜇𝜇𝑁𝑁𝜇𝜇 .

Hence, we have:

�𝜇𝑁𝑁𝜇 𝑎�
���

𝜇𝜇𝜇𝜇𝜇𝜇𝑁𝑁𝜇𝜇 . (1)

Incidentally, the name Möbius is popularly
known in another context — the so-called
Möbius strip, which will be a topic for another
day.
The Möbius function has numerous nice
properties which make it a very useful function in
number theory and combinatorics.

II. Relation between GCD and LCM of
several numbers

To demonstrate how unexpectedly useful the
PIE formula can be, we describe a nice
application of the formula. Here is the context.
We all know the pleasing formula that relates
gcd (‘greatest common divisor’, also known as
‘highest common factor’) and lcm (‘lowest
common multiple’) of any two positive integers
𝑎𝑎 and 𝑏𝑏:

gcd𝜇𝑎𝑎𝑎 𝑏𝑏𝜇 𝑎 lcm 𝜇𝑎𝑎𝑎 𝑏𝑏𝜇 𝑎 𝑎𝑎𝑏𝑏. (2)

This formula relates the gcd and lcm of two
integers 𝑎𝑎𝑎 𝑏𝑏. Here is the corresponding formula
for the case of three integers. If 𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎 be any
three positive integers, then:

lcm 𝜇𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎𝜇

𝑎 𝑎𝑎𝑏𝑏𝑎𝑎 𝑎 gcd𝜇𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎𝜇
gcd𝜇𝑎𝑎𝑎 𝑏𝑏𝜇 𝑎 gcd𝜇𝑏𝑏𝑎 𝑎𝑎𝜇 𝑎 gcd𝜇𝑎𝑎𝑎 𝑎𝑎𝜇 . (3)

For the general case we need the following result
which is actually the PIE in another incarnation
(though it may not look like it):

Theorem (PIE�). If 𝑛𝑛�𝑎 𝑛𝑛�𝑎⋯ 𝑎 𝑛𝑛� is � �inite se�uen�e
of positive integers, then

max𝜇𝑛𝑛�𝑎⋯ 𝑎 𝑛𝑛�𝜇

𝑎�
�
𝑛𝑛� −�

���
min �𝑛𝑛�𝑎 𝑛𝑛��

+ �
�����

min �𝑛𝑛�𝑎 𝑛𝑛�𝑎 𝑛𝑛��

− ⋯ + 𝜇−1𝜇��� min 𝜇𝑛𝑛�𝑎⋯ 𝑎 𝑛𝑛�𝜇 . (4)

Here, ‘max’ and ‘min’ stand for maximum and
minimum respectively. The symbol ∑��� means:
‘the sum over all pairs of indices 𝑖𝑖𝑎 𝑖𝑖 where 𝑖𝑖 𝑖 𝑖𝑖.
Similarly for the symbol ∑����� and others like it.
The formula may look mysterious, so it will help if
we examine it more closely.
• Take the case of two positive integers 𝑎𝑎𝑎 𝑏𝑏. Then
the claim is that

max𝜇𝑎𝑎𝑎 𝑏𝑏𝜇 𝑎 𝑎𝑎 + 𝑏𝑏 −min𝜇𝑎𝑎𝑎 𝑏𝑏𝜇.

This is clearly true.
• Take the case of three positive integers 𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎.
Then the claim is that

max𝜇𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎𝜇 𝑎 𝑎𝑎 + 𝑏𝑏 + 𝑎𝑎 −min𝜇𝑎𝑎𝑎 𝑏𝑏𝜇
− min𝜇𝑎𝑎𝑎 𝑎𝑎𝜇 − min𝜇𝑏𝑏𝑎 𝑎𝑎𝜇
+ min𝜇𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎𝜇.

To see why this is true, suppose (there is no loss
of generality in assuming this) that 𝑎𝑎 𝑎 𝑏𝑏 𝑎 𝑎𝑎.
The above claim then reduces to the following:

𝑎𝑎 𝑎 𝑎𝑎 + 𝑏𝑏 + 𝑎𝑎 − 𝜇𝑎𝑎 + 𝑎𝑎 + 𝑏𝑏𝜇 + 𝑎𝑎𝑎

which is clearly true.
• Take the case of four positive integers 𝑎𝑎𝑎 𝑏𝑏𝑎 𝑎𝑎𝑎 𝜇𝜇
where (without any loss of generality, as
earlier) 𝑎𝑎 𝑎 𝑏𝑏 𝑎 𝑎𝑎 𝑎 𝜇𝜇. Then the claim reduces
to the following claim:

𝜇𝜇 𝑎 𝑎𝑎 + 𝑏𝑏 + 𝑎𝑎 + 𝜇𝜇
− 𝜇𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑏𝑏 + 𝑏𝑏 + 𝑎𝑎𝜇
+ 𝜇𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑏𝑏𝜇 − 𝑎𝑎𝑎

which is clearly true. The general case may be
similarly reasoned out and is left as an exercise.

To convince ourselves that the above can indeed
be useful in unexpected ways, let us look at a set
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𝑎𝑎�, 𝑎𝑎�,⋯ , 𝑎𝑎� of positive integers. Then we will
show the following:

lcm (��,⋯ , ��) �
(∏� ��) �∏����� ��� ���, ��, ����⋯

�∏��� ��� ���, ���� �∏������� ��� ���, ��, ��, ����⋯
.

(5)

This will be deduced from statement (4) about
maxima and minima. To see the connection,
consider the prime numbers dividing the 𝑎𝑎� ’s.
Then, clearly: the exponent of a prime 𝑝𝑝 dividing
the gcd of a collection of numbers is equal to the
minimum of the exponents of 𝑝𝑝 dividing the
numbers, and the exponent of a prime 𝑝𝑝 dividing
the lcm of a collection of numbers is equal to the
maximum of the exponents of 𝑝𝑝 dividing the
numbers.
Thus, if 𝑝𝑝�� ,⋯ , 𝑝𝑝�� are the powers of a �ixed prime
𝑝𝑝 dividing the numbers 𝑎𝑎�,⋯ , 𝑎𝑎� , then the gcd of
the 𝑎𝑎� ’s is exactly divisible by 𝑝𝑝���(��,⋯,��), and the
lcm of the 𝑎𝑎� ’s is exactly divisible by 𝑝𝑝���(��,⋯,��).
Let us use the short form Ord�(𝑁𝑁) for the largest
integer 𝑒𝑒 such that 𝑝𝑝� divides 𝑁𝑁. Then if we raise
𝑝𝑝 to each of the terms of the equality

max(𝑛𝑛�,⋯ , 𝑛𝑛�)

=�
�
𝑛𝑛� −�

���
min �𝑛𝑛�, 𝑛𝑛��

+ �
�����

min �𝑛𝑛�, 𝑛𝑛�, 𝑛𝑛��

− ⋯ + (−1)��� min (𝑛𝑛�,⋯ , 𝑛𝑛�) ,

(to see why, you need to use repeatedly the fact
that 𝑝𝑝��� = 𝑝𝑝�×𝑝𝑝� and 𝑝𝑝��� = 𝑝𝑝�÷𝑝𝑝�), we obtain
Ord� (lcm (��,⋯ , ��))

� Ord��
(∏� ��) �∏����� ��� ���, ��, ����⋯

�∏��� ��� ���, ���� �∏������� ��� ���, ��, ��, ����⋯
�.

We have obtained expression (5) for the lcm of the
𝑎𝑎� ’s.

III. The secret(ary) adversary
Here is another well-known problem concerning
a particularly careless (or perhaps mischievous)
secretary. The scenario is that a rich person
writes a letter each to Alka, Beena, Chanda and

�eepa offering different �inancial scholarships to
each, but the secretary puts each letter in a
wrongly addressed envelope. The �inancier is
naturally cross and asks the secretary to correct
his mistake. However, the secretary again puts
each letter in a wrong envelope! How many ways
can he make such a mistake? A bit of counting
(which we leave as an exercise for you) shows
that the number is 9.
What is the best way to �igure out this number if
there are 𝑛𝑛 people and 𝑛𝑛 envelopes (and each
letter must go to the wrong person)? Once again,
the PIE comes to the rescue. The total number of
ways of distributing 𝑛𝑛 letters among 𝑛𝑛 persons
(one letter to each person) is of course 𝑛𝑛𝑛. Let 𝑁𝑁�
be the number of ways of distributing the letters
so that at least one person (it could be any of the
𝑛𝑛 persons) gets his or her correct letter; let𝑁𝑁� be
the number of ways of distributing the letters so
that at least two persons get their correct letters;
let 𝑁𝑁� be the number of ways of distributing the
letters so that at least three persons get their
correct letters; and similarly for 𝑁𝑁�, 𝑁𝑁�, …. (Note
that by this notation we could say that 𝑁𝑁� = 𝑛𝑛𝑛.)
Then the PIE tells us that the number of ways of
distributing the letters so that no one gets their
letter is

𝑁𝑁� − 𝑁𝑁� + 𝑁𝑁� − 𝑁𝑁� + 𝑁𝑁� − +⋯+ (−1)�𝑁𝑁�.
Computing 𝑁𝑁�, 𝑁𝑁�, …is easy. Suppose that at least
𝑟𝑟 people receive their correct letters. Let us look
at a �ixed set of 𝑟𝑟 people. For the remaining 𝑛𝑛 − 𝑟𝑟
persons no restriction has been placed, so the
number of ways of distributing the letters is
(𝑛𝑛 − 𝑟𝑟)𝑛. This is so for each �ixed set of 𝑟𝑟 persons,
and there are (��) such sets; hence
𝑁𝑁� = (��) × (𝑛𝑛 − 𝑟𝑟)𝑛. It follows that the number of
possibilities in which when no one receives their
correct letter is

𝑛𝑛𝑛−�𝑛𝑛1�(𝑛𝑛 − 1)𝑛+�𝑛𝑛2�(𝑛𝑛 − 2)𝑛−�𝑛𝑛3�(𝑛𝑛 − 3)𝑛

+ ⋯ + (−1)��𝑛𝑛𝑛𝑛�0𝑛= 𝑛𝑛𝑛
�

�
���

(−1)�
𝑟𝑟𝑛

This is called the derangement number and it is
denoted by 𝐷𝐷�; so 𝐷𝐷� = 𝑛𝑛𝑛∑�

���(−1)�/𝑟𝑟𝑛.
Here are the values of the �irst few such numbers:

𝑛𝑛 1 2 3 4 5 6 ⋯
𝐷𝐷� 0 1 2 9 44 265 ⋯
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IV. Chess-‘bored’ Rooks?
The next example we mention is to do with a
chess board. We know that there are 8! ways of
placing 8 rooks on a chess board such that no
two attack each other. This is because on the top
row, one can place a rook on any one of the 8
places; the second rook can be placed on the
second row on any one of the 7 columns other
than the column containing the �irst one. Then,
the third rook can be placed on the third row on
any of the 6 columns not containing either of the
two rooks, etc.
Now, what if we �ix a subset 𝑇𝑇 of the 𝑛𝑛� squares
in a 𝑛𝑛 𝑛 𝑛𝑛 chess board where the rooks do not
like to sit (let us say these seats are ‘boring’)?
That is, we place 𝑛𝑛 mutually non-attacking rooks
on the chess board such that none of the rooks
are on the 𝑇𝑇-squares. How many ways can this be
done? (Of course, this will depend on 𝑇𝑇.)
Let us look at an example where the chessboard
has size 4 𝑛 4. Denote the 16 squares by ordered
pairs (𝑖𝑖𝑖 𝑖𝑖𝑖 where 1 ≤ 𝑖𝑖𝑖 𝑖𝑖 ≤ 4. Suppose
𝑇𝑇 𝑇 𝑇(1𝑖 1𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (𝑇𝑖 4𝑖𝑖 (4𝑖 4𝑖𝑇. Counting
carefully gives us 6 possibilities of placing 4
non-attacking rooks with no rook on any of the 5
𝑇𝑇-squares. Indeed, the possible arrangements
are these:

(1𝑖 𝑇𝑖𝑖 (𝑇𝑖 4𝑖𝑖 (𝑇𝑖 1𝑖𝑖 (4𝑖 𝑇𝑖

(1𝑖 𝑇𝑖𝑖 (𝑇𝑖 4𝑖𝑖 (𝑇𝑖 1𝑖𝑖 (4𝑖 𝑇𝑖

(1𝑖 4𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (𝑇𝑖 1𝑖𝑖 (4𝑖 𝑇𝑖

(1𝑖 4𝑖𝑖 (𝑇𝑖 1𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (4𝑖 𝑇𝑖

(1𝑖 𝑇𝑖𝑖 (𝑇𝑖 4𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (4𝑖 1𝑖

(1𝑖 4𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (𝑇𝑖 𝑇𝑖𝑖 (4𝑖 1𝑖

In general, let us look at an 𝑛𝑛 𝑛 𝑛𝑛 chessboard and
a �ixed subset 𝑇𝑇 of squares. Let 𝑇𝑇� denote the
number of ways of placing 𝑟𝑟 non-attacking rooks
on 𝑇𝑇. Then, by the PIE, the number 𝑁𝑁 of ways of
placing 𝑛𝑛mutually non-attacking rooks such that
none of them lies on a 𝑇𝑇-square is given as

𝑁𝑁 𝑇 𝑛𝑛!𝑁(𝑛𝑛 𝑁 1𝑖! 𝑇𝑇� + (𝑛𝑛 𝑁 𝑇𝑖! 𝑇𝑇� 𝑁 ⋯ + (𝑁1𝑖�𝑇𝑇�.

The proof of this is left to the reader as an
exercise.

V. Deep waters
Finally, we draw attention to some connections
of the Möbius function with prime numbers at a
basic but deep level. One of the great discoveries of
the great Carl Friedrich Gauss is a prediction
known as the prime number theorem. At the ripe
old age of 15 (in 1792), Gauss conjectured that the
number 𝜋𝜋(𝜋𝜋𝑖 of prime numbers not exceeding a
given number 𝜋𝜋 is ‘asymptotic’ to 𝜋𝜋𝑥 𝑥𝑥𝑥(𝜋𝜋𝑖. By
‘asymptotic’, one means here that the ratio
𝜋𝜋(𝜋𝜋𝑖 𝜋 𝜋𝜋𝑥 𝑥𝜋 𝜋𝜋 gets arbitrarily close to 1 as 𝜋𝜋 gets
arbitrarily large.
More precisely, he predicted that 𝜋𝜋(𝜋𝜋𝑖 is
asymptotic to the following integral:

�

�
�

𝑑𝑑𝑑𝑑
𝑥𝜋 𝑑𝑑 .

This most amazing statement became a theorem
only a century later when it was proved
simultaneously and independently by Hadamard
and by de la Valle Poussin. The remarkable fact is
that this theorem is equivalent to the
simply-stated assertion that

1
𝜋𝜋 �

���
𝜇𝜇(𝑛𝑛𝑖 𝜇 𝜇 as 𝜋𝜋 𝜇 𝑥.

Of course, this is only neat as a statement. Proving
it is just as dif�icult as proving the prime number
theorem!
At this point of time, is there any single problem
in mathematics which could be held as a
show-piece in that it embodies the most dif�icult
of open problems in mathematics? If such a
thing is at all admissible, the winner would
certainly be the so-called Riemann hypothesis
stated by Gauss’s student, the great Bernhard
Riemann (1800–1840). We do not state it here as
it is not easy to do so in simple terms. However,
the equivalent statement in terms of the Möbius
function is the following:
Conjecture. For any constant 𝑑𝑑 𝑡 1𝑥𝑇, there exists
a constant 𝐶𝐶 𝑡 𝜇 such that

�
���

𝜇𝜇(𝑛𝑛𝑖 ≤ 𝐶𝐶𝜋𝜋� for all 𝜋𝜋 𝑡 𝜇.

But I would not advise readers to try proving this!
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Exercises
(1) Let 𝑛𝑛 be any positive integer exceeding 1.

Show that the sum 𝜇𝜇𝜇𝜇𝜇𝜇 over all the divisors 𝜇𝜇
of 𝑛𝑛 equals 0.

Example: Take 𝑛𝑛 𝑛 𝑛. Its divisors are 1, 2, 3, 𝑛,
and their 𝜇𝜇-values are 1,−1,−1, 1, whose sum
is 0.

(2) Let 𝑛𝑛 be any positive integer exceeding 1.
Show that the sum |𝜇𝜇𝜇𝜇𝜇𝜇| over all the divisors
𝜇𝜇 of 𝑛𝑛 equals 2� where 𝑘𝑘 is the number of
distinct prime divisors of 𝑛𝑛.

Example: Take 𝑛𝑛 𝑛 𝑛. Its divisors are 1, 2, 3, 𝑛,
and their |𝜇𝜇|-values are 1, 1, 1, 1, whose sum

is 4. The number of distinct prime divisors of
𝑛 is 2, and 2� 𝑛 4.

(3) In proving that
max𝜇𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝜇 𝑛 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎 −m𝑎𝑎𝜇𝑎𝑎, 𝑎𝑎𝜇

− m𝑎𝑎𝜇𝑎𝑎, 𝑎𝑎𝜇 − m𝑎𝑎𝜇𝑎𝑎, 𝑎𝑎𝜇
𝑎 m𝑎𝑎𝜇𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝜇,

we said: “there is no loss of generality in
assuming that 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎”. Why is there
‘no loss of generality’ in assuming that
𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎?

(4) Try proving the general relation (4). (It is not
as dif�icult as it looks�)

Further reading
i. V Balakrishnan, Combinatorics: Including Concepts Of Graph Theory (Schaum Series)
ii. I Niven, H S Zuckerman & H L Montgomery, An Introduction to the Theory of Numbers (John Wiley, Fifth

Edition)
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