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PHTs …Primitive and beautiful

Harmonic Triples
Part–2

Read how the same simple relationship connects the side and diagonals of a
regular heptagon and prove this using the triple angle identities from
trigonometry. Then prove the same result using the little known Ptolemy’s
theorem. �nd �inally� learn how to generate these lesser known triads �
Primitive Harmonic Triples.

InPart I of this article we introduced the notion of
a primitive harmonic triple (‘PHT’) as a triple (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎
of coprime positive integers satisfying the equation

1
𝑎𝑎 + 1

𝑏𝑏 = 1
𝑐𝑐 .

Examples: (3, 6, 2) and (6, 30, 5). We had listed various
geometric and physical contexts in which this equation surfaces.
We had also mentioned that the equation arises in connection
with the diagonals of a regular 7-sided polygon. We start by
studying this problem.

Diagonals of a regular heptagon
Given a regular heptagon, one can draw (��) = 21 different
segments connecting pairs of its vertices. But these 21 segments
come in just three different lengths: its diagonals come in two
different lengths, and then there is the side of the heptagon.
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Let 𝑎𝑎 and 𝑏𝑏 be the lengths of the longer diagonal and the shorter diagonal (respectively), and let 𝑐𝑐 be the
side of the heptagon, so 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎 (see Figure 1); then the claim is that 1/𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎. We provide two
proofs for this claim.

a

b

c

FIGURE 1. Regular heptagon and inscribed triangle; claim: 1/a + 1/b = 1/c

A trigonometric proof. The angle subtended by each side of a regular heptagon at the centre of the
circumscribing circle is 360∘/7. It follows that in the shaded triangle shown in Figure 1, with sides 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎,
the angles are (respectively) 720∘/7, 360∘/7 and 180∘/7. For convenience let us denote 180∘/7 by 𝜃𝜃; then
the angles of the triangle are 4𝜃𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃, and the lengths of the sides opposite these angles are, by the sine
rule, proportional to sin 4𝜃𝜃, sin 2𝜃𝜃, sin 𝜃𝜃 respectively. So the claim that 1/𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 is equivalent to
the claim that if 𝜃𝜃 𝜃𝜃𝜃𝜃 ∘/7, then:

1
sin 4𝜃𝜃 + 1

sin 2𝜃𝜃 = 1
sin 𝜃𝜃 , (1)

and this is what we now establish. Using the well-known double- and triple-angle identities we rewrite
the identity in various equivalent forms:

1
sin 4𝜃𝜃 + 1

sin 2𝜃𝜃 = 1
sin 𝜃𝜃 ⟺ 1 + sin 4𝜃𝜃

sin 2𝜃𝜃 = sin 4𝜃𝜃
sin 𝜃𝜃

⟺ 1 𝑎 2 cos 2𝜃𝜃 𝑎 4 cos 𝜃𝜃 �2 cos� 𝜃𝜃 𝜃 1�
⟺ 1 𝑎 2 �2 cos� 𝜃𝜃 𝜃 1� 𝑎 4 cos 𝜃𝜃 �2 cos� 𝜃𝜃 𝜃 1�
⟺ 8cos� 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃 � 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃  𝜃𝜃 𝜃𝜃𝜃𝜃   𝜃

Hence the relation 1/𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 is equivalent to the following: if 𝜃𝜃 𝜃𝜃𝜃𝜃 ∘/7, then

8 cos� 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃 � 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃  𝜃𝜃 𝜃𝜃𝜃𝜃   𝜃 (2)

So if we prove (2) we also prove (1). To prove (2) we note that since 7𝜃𝜃 𝜃𝜃𝜃𝜃 ∘, we have the relation
3𝜃𝜃 𝜃𝜃𝜃𝜃 ∘ − 4𝜃𝜃, and therefore sin 3𝜃𝜃 𝜃𝜃𝜃𝜃𝜃  𝜃𝜃. This yields, via the double- and triple-angle identities:

3 sin 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃 � 𝜃𝜃 𝑎 2 sin 2𝜃𝜃 cos 2𝜃𝜃 𝑎 4 sin 𝜃𝜃 cos 𝜃𝜃 �2 cos� 𝜃𝜃 𝜃 1� 𝑎
∴ 3 − 4 sin� 𝜃𝜃 𝑎 4 cos 𝜃𝜃 �2 cos� 𝜃𝜃 𝜃 1� [since sin 𝜃𝜃 𝜃 𝜃],
∴ 3 𝜃 4 �1 𝜃 cos� 𝜃𝜃� 𝑎 4 cos 𝜃𝜃 �2 cos� 𝜃𝜃 𝜃 1� 𝑎
∴ 8 cos� 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃 � 𝜃𝜃 𝜃 𝜃𝜃𝜃𝜃  𝜃𝜃 𝜃𝜃𝜃𝜃   𝜃

Thus (2) is established, and hence (1).
A proof using Ptolemy’s theorem. There is an elegant proof of the above equality using ‘pure geometry’,
but it requires the use of a theorem which is not so well known at the high school level (though it ought to
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be better known, as it is such a nice and useful result). The theorem is due to Ptolemy. Here is its
statement: If 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is a cyclic quadrilateral, then its sides obey the following equality:
𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃. That is, the sum of the products of pairs of opposite sides equals the product
of the diagonals. Ptolemy’s theorem can be applied in many kinds of settings and yields many nice results.
(�f course, we �irst need to identify a suitable cyclic quadrilateral.) (Editor’s note: Ptolemy’s theorem will
be taken up in the ‘Geometry corner’ of a subsequent issue of At Right Angles.)
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FIGURE 2. Regular heptagon and a cyclic quadrilateral inscribed in it

Here, we simply apply Ptolemy’s theorem to cyclic quadrilateral 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 whose vertices 𝑃𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃 are chosen
as shown in Figure 2. (The quadrilateral is cyclic since any regular polygon is cyclic, and 𝑃𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃𝑃 𝑃𝑃 are
vertices of a regular heptagon.) Note that 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄 are sides of the heptagon (both have length 𝑐𝑐), 𝑅𝑅𝑅𝑅 is
a ‘long’ diagonal (length 𝑎𝑎), 𝑆𝑆𝑆𝑆 is a ‘short’ diagonal (length 𝑏𝑏), and its diagonals 𝑄𝑄𝑄𝑄 and 𝑃𝑃𝑃𝑃 have lengths 𝑎𝑎
and 𝑏𝑏 respectively. Hence by Ptolemy’s theorem:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏    𝑏𝑏𝑏

Dividing through by 𝑎𝑎𝑎𝑎𝑎𝑎, we get 1/𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   , as claimed. (Simple, no? But it did require spotting a
suitable quadrilateral ….)

Generation of PHTs
Nowwe take up the question of how to generate primitive harmonic triples in a systematic and
mathematically ‘nice’ way. (So we avoid ‘brute force enumeration’.) To avoid listing the same solution
more than once (i.e., listing both (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎 and (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ; clearly if one of these is harmonic, so is the other),
we shall assume right through that 𝑎𝑎 𝑎 𝑎𝑎.
At the start we draw attention to a feature about PHTs which makes them different from PPTs. In the case
of a Pythagorean triple it is easy to show that if two numbers of the triple are multiples of some number 𝑘𝑘,
then so must be the third number of the triple; e.g., consider the triple (6, 8, 10). Strangely, this property
does not hold for harmonic triples! A nice example is the harmonic triple (10, 15, 6); here, each pair of
numbers shares a factor exceeding 1, but this factor fails to divide the third number in the triple. The same
is true for the PHT (21, 28, 12). (Nevertheless we call such triples ‘primitive’, because there is no factor
common to all the three numbers.)
Systematic generation of harmonic triples. As with PPTs, there are many ways in which we can track
down the full family of PHTs. We use an approach based on factorization.
We �irst clear fractions and get the relation 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    . We write this as:

𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎   (3)
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If we try to factorize 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 we �ind there is a ‘term missing’: the expression is ‘almost’ equal to
(𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 but not quite. So we put it in the missing term (which is clearly 𝑐𝑐�) and write
𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎� = 𝑐𝑐�. Factorizing this we get:

(𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎�. (4)

From this we see that 𝑎𝑎 𝑎 𝑎𝑎 and 𝑏𝑏𝑏𝑏𝑏   are a pair of complementary factors of 𝑐𝑐�. (Two factors of a number
are called ‘complementary factors’ if their product equals that number; e.g., 2 and 5 are complementary
factors of 10.) Right away we get a method of generating solutions to the harmonic equation— the
‘method of complementary factors’. We express it algorithmically as follows.
(i) Select any positive integer 𝑐𝑐.

(ii) Write 𝑐𝑐� as a product 𝑢𝑢 𝑢 𝑢𝑢 of two positive integers, with 𝑢𝑢 𝑢 𝑢𝑢.

(iii) Let 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏    .

(iv) Then (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 is a harmonic triple in which 𝑎𝑎 𝑎 𝑎𝑎. To check that it is harmonic:
1
𝑎𝑎 + 1

𝑏𝑏 = 1
𝑐𝑐𝑐𝑐𝑐   + 1

𝑐𝑐𝑐𝑐𝑐   = 1
𝑐𝑐𝑐𝑐𝑐   + 1

𝑐𝑐𝑐𝑐𝑐  �/𝑢𝑢

= 1
𝑐𝑐𝑐𝑐𝑐   + 𝑢𝑢

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   =
𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   +
𝑢𝑢

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   =
𝑐𝑐𝑐𝑐𝑐 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   =
1
𝑐𝑐 .

The triple may not be primitive, so we must work out how to ensure this. But it is clear that by selecting
all possible values of 𝑐𝑐, and by factorizing 𝑐𝑐� is all possible ways, we will get all possible harmonic triples.
Here are two worked examples.
• Let 𝑐𝑐𝑐  𝑐; then 𝑐𝑐� = 36. Choose the factorization 𝑐𝑐� = 2 × 18. This yields 𝑎𝑎 𝑎𝑎  𝑎 𝑎𝑎𝑎   and
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      𝑏, and we get the harmonic triple (8, 24,6) . Note that it is not primitive.

• We again let 𝑐𝑐𝑐  𝑐, but change the factorization to 𝑐𝑐� = 4×  9. Now we get 𝑎𝑎 𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎   and
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      , and we get the harmonic triple (10, 15,6) , which is primitive.

• Let 𝑐𝑐𝑐𝑐𝑐  , and choose the factorization 𝑐𝑐� = 2 × 50. This yields 𝑎𝑎 𝑎𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎   and
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      . We get the triple (12,6 0, 10). Note that it is not primitive.

• Let 𝑐𝑐𝑐𝑐𝑐  , and choose the factorization 𝑐𝑐� = 4×  25. This yields 𝑎𝑎 𝑎𝑎𝑎  𝑎 𝑎𝑎𝑎𝑎   and
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      . We get the triple (14, 35, 10), which is primitive.

It appears that for (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 to be primitive, we must choose the factorization 𝑐𝑐� = 𝑢𝑢 𝑢 𝑢𝑢 such that 𝑢𝑢 and 𝑣𝑣
are coprime. This is so and we take up the proof in Part III of this series. (We pose this as a problem for
you, below.) Table 1 gives a list of a few primitive harmonic triples generated this way.

(2, 2, 1), (3,6,  2), (4, 12, 3), (5, 20,4),
(6, 30, 5), (7,4 2,6),  (8, 56, 7), (9, 72, 8),
(10, 15,6),  (10, 90, 9), (14, 35, 10), (18,6 3, 14),
(21, 28, 12), (22, 99, 18), (24,4 0, 15), (30, 70, 21),
(33, 88, 24), (36,4 5, 20), (44, 77, 28), (55,66,  30),
(60, 84, 35), (65, 104,4 0), (78, 91,4 2), (105, 120, 56).

TABLE 1. Some PHTs
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Questions to ponder
(1) We stated above that for (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 to be primitive, we must choose the factorization 𝑐𝑐� = 𝑢𝑢𝑢𝑢 in such a

way that 𝑢𝑢 and 𝑣𝑣 are coprime. Why should this be so?

(2) In Table 1, note the triples (2, 2, 1), (3, 6, 2), (5, 20, 4), (6, 30, 5), …. Each of these has the same form.
Find a formula that generates these PHTs, and show that each such triple is primitive.

(3) Add to the list of triples to Table 1 and study the table carefully. Try to �ind some interesting features
that the triples share. (In Part III — the concluding part — of this series we will explore some
properties of PHTs.)

(4) Some PHTs can be ‘realized’ as triangles; for example, there exist triangles with sides 2, 2, 1 and
10, 15, 6 respectively. On the other hand there does not exist a triangle with sides 6, 30, 5; nor does
there exist a triangle with sides 5, 20, 4. (Reason: Each of these violates the triangle inequality.) What
extra condition is needed in the factorization method which will yield a PHT that can be realized as a
triangle?

(5) On examining the primitive harmonic triples in Table 1, we notice that the following steps sometimes
yield a triple which is harmonic:
(i) Choose any two integers 𝑎𝑎 and 𝑐𝑐, with 𝑎𝑎 𝑎 𝑎𝑎.

(ii) Let 𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , and let 𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑏𝑏𝑏�.

(iii) Then the triple (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 is sometimes harmonic.

For example, take 𝑎𝑎 𝑎𝑎𝑎 , 𝑐𝑐𝑐𝑐𝑐  ; then 𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔   , so 𝑏𝑏𝑏𝑏𝑏   𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏  . We may verify
that the triple (14, 35, 10) is harmonic (indeed, it is a PHT).
On the other hand, take 𝑎𝑎 𝑎𝑎𝑎 , 𝑐𝑐𝑐𝑐𝑐  ; then 𝑔𝑔 𝑔𝑔 , so 𝑏𝑏𝑏𝑏𝑏   𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏  . But the triple (14, 42, 12)
is not harmonic.
When do these steps yield a harmonic triple? Obtain a complete answer.
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