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Statement of the problem. Consider the following series of
questions about a polynomial P(x) which mimics the
behaviour of an exponential function.

(1) Suppose that P is quadratic, and P(x) = 2x for
x = 0, 1, 2. What is the value of P(3)?

(2) Suppose that P is cubic, and P(x) = 2x for
x = 0, 1, 2, 3. What is the value of P(4)?

(3) Suppose that P is quadratic, and P(x) = 3x for
x = 0, 1, 2. What is the value of P(3)?

(4) Suppose that P is cubic, and P(x) = 3x for
x = 0, 1, 2, 3. What is the value of P(4)?

(5) Suppose that P is a polynomial in x of degree n, and
P(x) = 2x for x = 0, 1, 2, . . . , n. What is the value
of P(n+ 1)?

(6) Suppose that P is a polynomial in x of degree n, and
P(x) = 3x for x = 0, 1, 2, . . . , n. What is the value
of P(n+ 1)?

We shall prove an elegant result here which answers all such
questions at once.

Theorem. Let P(x) be a polynomial in x of degree n.
Suppose that P(x) = ax for x = 0, 1, 2, . . . , n, for some
number a. Then P(n+ 1) = an+1 − (a− 1)n+1.

So if P is quadratic, and P(x) = 3x for x = 0, 1, 2, then
(going by the theorem) the value of P(3) is 33 − 23 = 19.
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Let us check this claim the ‘long way’ – by actually computing the expression for P(x). Let
P(x) = a+ bx+ cx2. Then we have:

a = 30 = 1,

a+ b+ c = 31 = 3,

a+ 2b+ 4c = 32 = 9.

The first two equations yield b+ c = 2, and the first and third equations yield 2b+ 4c = 8. From these
we get c = 2 and b = 0. Hence P(x) = 1 + 2x2, so P(3) = 19, as claimed.

Proof. We shall prove the claim using the principle of induction, by induction on the degree of the
polynomial.

Let us first establish the claim for polynomials of degree 1 (i.e., linear polynomials). Let P(x) be a
polynomial in x of degree 1, and suppose that P(0) = 1, P(1) = a. Then the claim is that
P(2) = a2 − (a− 1)2, i.e., P(2) = 2a− 1. To prove this, note that since P(x) is of degree 1, we have

P(2)− P(1) = P(1)− P(0), ∴ P(2) = 2P(1)− P(0) = 2a− 1,

as claimed.

The key result used is the following.

Lemma. Let f (x) be a polynomial in x of degree n, where n is a positive integer. Define g(x) by:

g(x) = f (x+ 1)− f (x). (1)

Then g(x) is a polynomial in x of degree n− 1.

For example, if f (x) = x3, a polynomial of degree 3, then g(x) = (x+ 1)3 − x3 = 3x2 + 3x+ 1, a
polynomial of degree 2. (Editor’s note. It should be clear why this is true: the highest degree term in f (x)
gets cancelled as a result of the subtraction, so the degree of g is lower than that of f. In fact, the degree of g
is n− 1, which is 1 lower than the degree of f. We shall say more about this lemma in the appendix.)

The induction hypothesis is the following.

Suppose that f (x) is a polynomial in x of degree k (a positive integer), such that f (x) = ax for
x = 0, 1, 2, . . . , k, for some a. Then f (k+ 1) = ak+1 − (a− 1)k+1.

To prove the induction step, we must assume the above and prove the following.

Suppose that g(x) is a polynomial in x of degree k+ 1, such that g(x) = ax for
x = 0, 1, 2, . . . , k, k+ 1, for some a. Then g(k+ 2) = ak+2 − (a− 1)k+2.

Proof of the induction step. Let g(x) be a polynomial in x with the stated properties: it has degree k+ 1,
and g(x) = ax for x = 0, 1, 2, . . . , k, k+ 1, for some a. We must compute the value of g(k+ 2). Now
consider the function h(x) = g(x+ 1)− g(x). We have:

h(0) = g(1)− g(0) = a− 1,

h(1) = g(2)− g(1) = a2 − a = a(a− 1),

h(2) = g(3)− g(2) = a3 − a2 = a2(a− 1),

h(3) = g(4)− g(3) = a4 − a3 = a3(a− 1),

and in general:
h(x) = ax(a− 1) for x = 0, 1, 2, . . . , k. (2)
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Define
f (x) =

h(x)
a− 1

. (3)

Then the function f satisfies the conditions of the induction hypothesis: it is a polynomial in x of degree k
(by the lemma), and f (x) = ax for x = 0, 1, 2, . . . , k. Hence f (k+ 1) = ak+1 − (a− 1)k+1.

Therefore we have, using the definitions of h and g:

h(k+ 1) = (a− 1) · f (k+ 1)

= (a− 1) ·
(
ak+1 − (a− 1)k+1) ,

g(k+ 2) = g(k+ 1) + h(k+ 1)

= ak+1 + (a− 1) ·
(
ak+1 − (a− 1)k+1)

= ak+2 − (a− 1)k+2,

as required. This proves the induction hypothesis. Hence the theorem is proved. �

Proof of the lemma

We must prove that if f (x) is a polynomial of degree n, where n is a positive integer, and g(x) is
defined by g(x) = f (x+ 1)− f (x), then g(x) is a polynomial of degree n− 1.

Proof

Let
f (x) = axn + bxn−1 + · · · ,

where a ̸= 0. Then:

g(x) = f (x+ 1)− f (x)

= [a(x+ 1)n + b(x+ 1)n−1 + · · · ]− [axn + bxn−1 + · · · ]

= [a(x+ 1)n − axn] + [b(x+ 1)n−1 − bxn−1] + · · · .

In the expression b(x+ 1)n−1 − bxn−1, the terms involving xn−1 cancel out, so the degree of that
portion is less than n− 1.

In the expression a(x+ 1)n − axn, the terms involving xn cancel out. The term involving xn−1 is
axn−1, and this term survives, since a ̸= 0 by assumption.

Hence the degree of g is n− 1. �

Box 1
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