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Fun Problems

k-transportable numbers

In the article Connections between Geometry and
Number Theory (elsewhere in this issue of At Right
Angles) the author refers to the notion of
‘𝑘𝑘-transportable numbers’ — numbers with the
property that if the left-most digit is shifted to the
right-most end, then the number thus obtained is
𝑘𝑘 times the original number. He quotes a result
due to S. Kahan that the only integral value of 𝑘𝑘
exceeding 1 for which such a number exists is
𝑘𝑘 𝑘 𝑘. We prove this result here (our proof is
different from Kahan’s), and show a surprising
way for generating such numbers. A more apt
name for such numbers than the one given would
be cyclic numbers, and we study this more general
notion in the next section.
Let 𝐴𝐴 𝑘 𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎� be a 𝑘𝑘-transportable number,
and let 𝐵𝐵 𝑘 𝑎𝑎�𝑎𝑎� …𝑎𝑎�𝑎𝑎�, where 𝑘𝑘 is a positive
integer (𝑘𝑘 𝑘 1; of course, 𝑘𝑘 𝑘 1𝑘). Then we have:

𝐵𝐵 𝑘 𝑘𝑘𝐴𝐴𝐵

�onstruct the following two in�inite recurring
decimals, whose ‘repetends’ (i.e., the portions that
repeat inde�initely) are the numbers 𝐴𝐴 and 𝐵𝐵
respectively. That is:

𝑥𝑥 𝑘 𝑘𝐵𝐴𝐴 𝐴𝐴𝐴𝐴 … 𝑥
𝑦𝑦 𝑘 𝑘𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵 … 𝐵

Both are ‘pure’ recurring decimals. Since 𝐵𝐵 𝑘 𝑘𝑘𝐴𝐴, it
follows that 𝑦𝑦 𝑘 𝑘𝑘𝑥𝑥. Now consider the effect of
multiplying 𝑥𝑥 by 1𝑘. Noting the ‘shift in the
decimal point’ we see that this yields

1𝑘𝑥𝑥 𝑘 𝑎𝑎�𝐵𝐵𝐵𝐵𝐵𝐵𝐵 … 𝑥

a number with integer part 𝑎𝑎�, and recurring
portion the same as that of 𝑦𝑦. Hence we have:

1𝑘𝑥𝑥 𝑘 𝑎𝑎� + 𝑦𝑦𝐵

Since 𝑦𝑦 𝑘 𝑘𝑘𝑥𝑥 this yields 1𝑘𝑥𝑥 𝑘 𝑎𝑎� + 𝑘𝑘𝑥𝑥, and
solving this for 𝑥𝑥 we get:

𝑥𝑥 𝑘 𝑎𝑎�
1𝑘 − 𝑘𝑘 𝐵

Since 𝑥𝑥 is a pure repeating decimal fraction, this
relation puts restrictions on the value of 𝑘𝑘. Indeed
we have 𝑘𝑘 𝑘 𝑘𝑥 𝑘𝑥 𝑘𝑥 𝑘𝑥 𝑘𝑥 𝑘. We also have 𝑘𝑘 𝑘 1. So
the possibilities for 𝑘𝑘 are just 𝑘𝑥 7. Of these, 𝑘𝑘 𝑘 7
yields 1/(1𝑘 − 𝑘𝑘𝑘 𝑘 𝑘𝐵𝑘𝑘𝑘…, which makes 𝐴𝐴 a
single digit number; this does not work out. Hence
𝑘𝑘 𝑘 𝑘 (this was Kahan’s result), and 𝑥𝑥 𝑘 𝑎𝑎�/7.
Since the repetend of 1/7 is 1𝑘𝑘𝑘𝑘7, we see that
𝐴𝐴 𝑘 𝑎𝑎� × 1𝑘𝑘𝑘𝑘7, with 𝑎𝑎� chosen appropriately.
Remembering that 𝑎𝑎� is also the left-most digit of
𝐴𝐴, we �ind that 𝑎𝑎� 𝑘 1 or 𝑘; only these two choices
work. Hence 𝐴𝐴 𝑘 1𝑘𝑘𝑘𝑘7 or 𝑘𝑘𝑘71𝑘.
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Obviously, repeating these blocks of digits will
give more numbers with the same property.
This �usti�ies the claim made in the article
that the only 𝑘𝑘-transportable integers are the
following:

142857, 142857142857,
142857142857142857, … ,

285714, 285714285714,
285714285714285714, … ,

all of which are 𝑘𝑘-transportable with 𝑘𝑘 𝑘 𝑘.

Cyclic numbers
The same idea can be used to solve the following:
Find a positive integer with the property that if its
units digit is shifted to its left-most end, the new
integer is twice the original one. Denote the number
by 𝐴𝐴 𝑘 𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎���𝑎𝑎� (so it has 𝑛𝑛 digits), and let
𝐵𝐵 𝑘 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎���; then 𝐵𝐵 𝑘 2𝐴𝐴. Let 𝑥𝑥, 𝑥𝑥 be
pure recurring decimals de�ined as follows:

𝑥𝑥 𝑘 𝑥𝑥𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 …
𝑘 𝑥𝑥𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎���𝑎𝑎� 𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎���𝑎𝑎� … ,

𝑥𝑥 𝑘 𝑥𝑥𝐵𝐵 𝐵𝐵 𝐵𝐵 𝐵𝐵 …
𝑘 𝑥𝑥𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎��� 𝑎𝑎�𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎��� … 𝑥

Then 𝑥𝑥 𝑘 2𝑥𝑥. If we multiply 𝑥𝑥 by 1𝑥we get a pure
decimal recurring decimal whose repetend is the
same as that of 𝑥𝑥:

1𝑥𝑥𝑥 𝑘 𝑎𝑎�𝑥𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎���𝑎𝑎� 𝑎𝑎�𝑎𝑎�𝑎𝑎� …𝑎𝑎���𝑎𝑎� …
𝑘 𝑎𝑎� + 𝑥𝑥𝑥

Since 𝑥𝑥 𝑘 2𝑥𝑥 this yields: 2𝑥𝑥𝑥 𝑘 𝑎𝑎� + 𝑥𝑥, and so:

𝑥𝑥 𝑘 𝑎𝑎�
19 𝑥

It therefore remains only to �ind the repetend of
the fraction 1/19, which we get by simple long
division:

1
19 𝑘 𝑥𝑥𝑥526𝑘1578947𝑘68421𝑥

If we choose 𝑎𝑎� 𝑘 1we get
𝐴𝐴 𝑘 𝑥526𝑘1578947𝑘68421, which has 𝑥 as its
�irst digit; so we discard this solution. If we choose
𝑎𝑎� 𝑘 2we get 𝐴𝐴 𝑘 1𝑥526𝑘1578947𝑘6842, and we
have a possible answer:

𝐴𝐴 𝑘 1𝑥526𝑘1578947𝑘6842𝑥

Please check that 1𝑥526𝑘1578947𝑘6842 × 2 𝑘
21𝑥526𝑘1578947𝑘684.
This means that 1𝑥526𝑘1578947𝑘6842 is the
smallest possible solution to the problem.
Other choices for 𝑎𝑎� yield more solutions, all using
the same repetend. Thus:

𝑎𝑎� 𝑘 2 yields 𝐴𝐴 𝑘 1𝑥526𝑘1578947𝑘6842,

𝑎𝑎� 𝑘 𝑘 yields 𝐴𝐴 𝑘 1578947𝑘68421𝑥526𝑘,

𝑎𝑎� 𝑘 4 yields 𝐴𝐴 𝑘 21𝑥526𝑘1578947𝑘684,

𝑎𝑎� 𝑘 5 yields 𝐴𝐴 𝑘 26𝑘1578947𝑘68421𝑥5,

𝑎𝑎� 𝑘 6 yields 𝐴𝐴 𝑘 𝑘1578947𝑘68421𝑥526,

𝑎𝑎� 𝑘 7 yields 𝐴𝐴 𝑘 𝑘68421𝑥526𝑘1578947,

𝑎𝑎� 𝑘 8 yields 𝐴𝐴 𝑘 421𝑥526𝑘1578947𝑘68,

𝑎𝑎� 𝑘 9 yields 𝐴𝐴 𝑘 47𝑘68421𝑥526𝑘15789𝑥

That’s a lot of solutions!
Given a positive integer 𝑁𝑁, let 𝑓𝑓𝑓𝑁𝑁𝑓 denote the
integer obtained by shifting its units digit to its
left-most end. (Example: 𝑓𝑓𝑓12𝑘4𝑓 𝑘 412𝑘.)
A number 𝑁𝑁 with the property that the ratio
𝑓𝑓𝑓𝑁𝑁𝑓 𝑓 𝑁𝑁 is an integer, or a rational number
with small numerator and denominator, is
called a cyclic number. The best known
example of such a number is 142857 (for which
the ratio is 5 𝑓 1). Such numbers are always
associated with the repetends of pure recurring
decimals (and that is what helps in �inding
them); but there is more: the numbers also have
some very striking properties. Here is one, which
crucially underlies the phenomenon explored in
the article Connections between Geometry and
Number Theory.
Let 𝑝𝑝 be any prime number greater than 5, and
let the recurring decimal corresponding to 1/𝑝𝑝
be computed; it will always be a pure recurring
decimal. Let 𝑁𝑁 be the repetend of this decimal.
The number of digits in 𝑁𝑁 could be odd or even.
If the number of digits in 𝑁𝑁 is even, say 2𝑘𝑘, then
let 𝐴𝐴 and 𝐵𝐵 be the 𝑘𝑘-digit numbers obtained by
‘slicing’ 𝑁𝑁 into two halves. Then the sum 𝐴𝐴 + 𝐵𝐵 is
a number made up only of nines. That is,
𝐴𝐴 + 𝐵𝐵 𝑘 1𝑥� − 1. Here are three examples of
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this remarkable phenomenon which goes by the
name ofMidy’s theorem.
• If 𝑝𝑝 𝑝 𝑝 then 1/𝑝𝑝 𝑝 𝑝𝑝14285𝑝, so 𝑁𝑁 𝑝 14285𝑝
which has an even number of digits (with
2𝑘𝑘 𝑝 𝑘). Slicing the repetend into two, we get
𝐴𝐴 𝑝 142 and 𝐵𝐵 𝑝 85𝑝. Observe that
𝐴𝐴 𝐴 𝐵𝐵 𝑝 𝐴𝐴𝐴 𝑝 1𝑝� − 1.

• If 𝑝𝑝 𝑝 1𝑝 then 1/𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑘𝐴2𝑝, so 𝑁𝑁 𝑝 𝑝𝑝𝑘𝐴2𝑝
which has an even number of digits (with
2𝑘𝑘 𝑝 𝑘). Slicing the repetend into two, we get
𝐴𝐴 𝑝 𝑝𝑝𝑘 and 𝐵𝐵 𝑝 𝐴2𝑝. Observe that
𝐴𝐴 𝐴 𝐵𝐵 𝑝 𝐴𝐴𝐴 𝑝 1𝑝� − 1.

• If 𝑝𝑝 𝑝 1𝑝 then 1/𝑝𝑝 𝑝 𝑝𝑝𝑝5882𝑝52𝐴411𝑝𝑘4𝑝, so
𝑁𝑁 𝑝 𝑝5882𝑝52𝐴411𝑝𝑘4𝑝which has an even
number of digits (with 2𝑘𝑘 𝑝 1𝑘). Slicing the
repetend into two, we get 𝐴𝐴 𝑝 𝑝5882𝑝52 and
𝐵𝐵 𝑝 𝐴411𝑝𝑘4𝑝. Observe that
𝐴𝐴 𝐴 𝐵𝐵 𝑝 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝 1𝑝� − 1.

In a future issue of At Right Angleswe shall
explore this beautiful theorem and some of its
extensions.

Problems for Solution
Problem II-2-F.1 Find a positive integer with the
property that if its units digit is shifted to its
left-most end, the new integer is 𝑝 times the
original one.

Problem II-2-F.2 Find a positive integer with the
property that if its units digit is shifted to its
left-most end, the new integer is 𝐴 times the
original one.

Problem II-2-F.3 Find a positive integer with the
property that if its units digit is shifted to its
left-most end, the new integer is 1�

� times the
original one.

Solutions of Problems from Issue-II-1

Problem II-1-F.1 Solve the cryptarithm
𝐸𝐸𝐴𝐴𝐸𝐸 𝐴 𝐸𝐸𝑇𝑇𝐴𝐴𝐸𝐸 𝑝 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸.
It is immediate that 𝐴𝐴 𝑝 1 and 𝐸𝐸 𝑝 𝐴. This yields
𝐸𝐸 𝑝 8 and 𝐴𝐴 𝑝 𝑝. Also, 𝐴𝐴 𝑝 𝑝 as the sum of a
𝑝-digit number and a 4-digit number cannot
exceed 11𝑝𝑝𝑝. This yields 𝑇𝑇 𝑝 2, and now all the
digits have been found: 81𝐴 𝐴 𝐴21𝐴 𝑝 1𝑝𝑝𝑝8.
Problem II-1-F.2 Solve the cryptarithm
𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸𝑇𝑇 𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁 𝑝 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀.

The answer for this cannot be unique because the
variables𝑇𝑇 and𝑁𝑁 (the two units digits) can be
swapped with no ill effects. Other than this
indeterminateness, however, the solution is unique:

𝐴𝑝258 𝐴 4𝑝𝑝𝑘 𝑝 1𝑝15𝐴4,
𝐴𝑝25𝑘 𝐴 4𝑝𝑝8 𝑝 1𝑝15𝐴4𝑝

We leave the derivation to the reader.
Problem II-1-F.3 Given that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑝 𝑆𝑆𝐼𝐼𝑆𝑆, and 𝑆𝑆𝐼𝐼𝑆𝑆
is not amultiple of 1𝑝, �ind the value of 𝐼𝐼𝐼𝐼𝐴𝐼𝐼𝐼𝐼𝐴𝑆𝑆𝐼𝐼𝑆𝑆.
Since 𝑆𝑆 𝑋 𝐼𝐼, 𝐼𝐼 it follows that 𝐼𝐼 𝑋 1, 𝐼𝐼 𝑋 1. Since
𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼 𝑉 1𝑝1𝑉𝐼𝐼 𝑉 𝐼𝐼𝑉 and 𝑆𝑆𝐼𝐼𝑆𝑆 is a three-digit

number, it follows that 𝐼𝐼 𝑉 𝐼𝐼 𝐼 1𝑝. Since 𝐼𝐼 𝑉 1,
𝐼𝐼 𝑉 1, 𝐼𝐼 𝑋 𝐼𝐼 we get {𝐼𝐼, 𝐼𝐼𝐼 𝑝 {2, 𝑝𝐼 or {2, 4𝐼. The
latter does not yield a solution since
24 𝐼 42 𝑉 1𝑝𝑝𝑝, but the former does �it:
𝑝2 𝐼 2𝑝 𝑝 𝑝𝑝𝑘. So the code is: 𝐼𝐼 𝑝 𝑝, 𝐼𝐼 𝑝 2, 𝑆𝑆 𝑝 𝑝,
𝑆𝑆 𝑝 𝑘, giving 𝐼𝐼𝐼𝐼𝐴𝐼𝐼𝐼𝐼𝐴𝑆𝑆𝐼𝐼𝑆𝑆 𝑝 𝑝2𝐴2𝑝𝐴𝑝𝑝𝑘 𝑝 𝑝𝐴1.
Note that the information that ‘𝑆𝑆𝐼𝐼𝑆𝑆 is not a
multiple of 1𝑝� has turned out to be super�luous.
Problem II-1-F.4 Explain why the numbers 1, 121,
12𝑝21, 12𝑝4𝑝21, 12𝑝454𝑝21, …are all perfect
squares.

It is immediate that 1 𝑝 1�, 121 𝑝 11�,
12𝑝21 𝑝 111�, and so on. To see why the digits
build up in that pattern simply examine the
underlying long multiplication. For example, here
is 111 𝐼 111:

1 1 1
𝐼 1 1 1

1 1 1
1 1 1

1 1 1
1 2 𝑝 2 1
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Of course, the pattern will break after the number
of digits exceeds 9.
Problem II-1-F.5 Explain why the numbers 1089,
110889, 11108889, 1111088889, …are all perfect
squares.

We observe that 1089 = 33�, 110889 = 333�,
11108889 = 3333�, and so on. Let us see why this
pattern persists. Let

𝐴𝐴� = 333…3�����
� threes

.

Then:

𝐴𝐴�� = (333…3)� = (111…1) × (999…9)

= (111…1) × (10� − 1)

= 111…1�����
� ones

000…0�����
� zeroes

− 111…1�����
� ones

The subtraction clearly yields the number

111…1�����
(� � �) ones

0 888…8�����
(� � �) eights

9,

which has the stated form.

A ‘Least Sum’ Divisibility Problem

In this short note we solve the following problem
from the Regional Mathematics Olympiad (RMO)
of 2006.
Given that 𝑎𝑎 and 𝑏𝑏 are positive integers such that
𝑎𝑎 𝑎 13𝑏𝑏 is divisible by 11 and 𝑎𝑎 𝑎 11𝑏𝑏 is divisible by
13, �ind the least possible value of 𝑎𝑎 𝑎 𝑏𝑏.
Attempting to solve the problem by ‘brute force’
does not seem satisfactory; we need a more
insightful approach. We shall look for a way to
generate pairs (𝑎𝑎, 𝑏𝑏) of positive integers having the
required divisibility properties, and thereby �ind
the pair with least sum.
Since 11 ∣ 𝑎𝑎 𝑎 13𝑏𝑏 it follows that 11 ∣ 𝑎𝑎 𝑎 𝑎𝑏𝑏.
(Recall that ‘∣’ is the symbol for divisibility; e.g., we
have 4 ∣ 1𝑎 but 5 ∤ 11.) Similarly, since
13 ∣ 𝑎𝑎 𝑎 11𝑏𝑏 we have 13 ∣ 𝑎𝑎 − 𝑎𝑏𝑏. Let

� 𝑎𝑎 𝑎 𝑎𝑏𝑏 = 11𝑎𝑎,
𝑎𝑎 − 𝑎𝑏𝑏 = 13𝑎𝑎,

where 𝑎𝑎, 𝑎𝑎 are integers. Solving this pair of
simultaneous equations for 𝑎𝑎 and 𝑏𝑏 we get:

𝑎𝑎 = 11𝑎𝑎 𝑎 13𝑎𝑎
𝑎 , 𝑏𝑏 = 11𝑎𝑎 − 13𝑎𝑎

4 ,
and hence:

𝑎𝑎 𝑎 𝑏𝑏 = 33𝑎𝑎 𝑎 13𝑎𝑎
4 .

Since 𝑎𝑎 and 𝑏𝑏 are integers we see that 𝑎𝑎 and 𝑎𝑎 are
either both odd or both even, and their summust
be a multiple of 4. (For: 4 ∣ 33𝑎𝑎 𝑎 13𝑎𝑎, hence
4 ∣ 𝑎𝑎𝑎𝑎𝑎.) Also, since 𝑎𝑎 𝑎 0 and 𝑏𝑏 𝑎 0wemust have

𝑎𝑎 𝑎 0, −11𝑎𝑎13 < 𝑎𝑎 < 11𝑎𝑎
13 .

In any case we must have 𝑎𝑎 < 𝑎𝑎. (Note that 𝑎𝑎 can
be negative.) Subject to these conditions we list in
Table 1 some of the possibilities for 𝑎𝑎 and 𝑎𝑎, and
hence for 𝑎𝑎 and 𝑏𝑏. For each value of 𝑎𝑎 we have
listed all possible values of 𝑎𝑎 that yield integer
values for 𝑎𝑎 and 𝑏𝑏.

𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑏𝑏 𝑎𝑎 𝑎 𝑏𝑏
3 1 𝑎3 5 𝑎8
4 0 𝑎𝑎 11 33
5 3 47 4 51
5 −1 𝑎1 17 38
6 𝑎 46 10 56
6 −𝑎 𝑎0 𝑎3 43
7 5 71 3 74
7 1 45 16 61
7 −3 19 𝑎9 48

The table suggests that the least possible value of
𝑎𝑎 𝑎 𝑏𝑏 subject to the stated conditions is 𝟐𝟐𝟐𝟐. We
justify that this is so by observing that since
−11𝑎𝑎 < 13𝑎𝑎 < 11𝑎𝑎, the value of 33𝑎𝑎 𝑎 13𝑎𝑎 lies
between 33𝑎𝑎 − 11𝑎𝑎 and 33𝑎𝑎 𝑎 11𝑎𝑎, i.e., between
𝑎𝑎𝑎𝑎 and 44𝑎𝑎, and hence that

11𝑎𝑎
𝑎 < 𝑎𝑎 𝑎 𝑏𝑏 < 11𝑎𝑎.

So if 𝑎𝑎 𝑎 6 the value of 𝑎𝑎 𝑎 𝑏𝑏 cannot drop below
33, and if 𝑎𝑎 = 5 the value of 𝑎𝑎 𝑎 𝑏𝑏 cannot drop
below 𝑎7�

� (and hence it cannot drop below 𝑎8, as
it is a integer).
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Since we have already achieved a value of 28with
𝑥𝑥 𝑥 𝑥 and 𝑦𝑦 𝑥 𝑦, this itself must be the least
possible value.

A graphical view

It is possible to view this problem in graphical
terms. We consider the problem posed in the
following manner: Given that 𝑎𝑎 and 𝑏𝑏 are positive
integers such that 𝑦𝑦 ∣ 𝑎𝑎 𝑎 2𝑏𝑏 and 𝑦𝑥 ∣ 𝑎𝑎 𝑎 2𝑏𝑏, �ind
the least possible value of 𝑎𝑎 𝑎 𝑏𝑏.
In Figure 1we have sketched the lines 𝑎𝑎𝑎2𝑏𝑏 𝑥 𝑦𝑦𝑎𝑎
for 𝑎𝑎 𝑥 𝑘𝑘𝑘𝑦𝑘𝑘2𝑘𝑘𝑥𝑘𝑘 (blue, dashed), and the
lines 𝑎𝑎 𝑎 2𝑏𝑏 𝑥 𝑦𝑥𝑎𝑎 for 𝑎𝑎 𝑥 𝑘𝑘𝑘𝑦𝑘𝑘2𝑘𝑘𝑥𝑘𝑘𝑘𝑘𝑘
(red, dashed). Points with non-negative integer
coordinates which are part of both families of lines
have been shown as heavy black dots. These
correspond to the pairs (𝑎𝑎𝑘 𝑏𝑏𝑎 of non-negative
integers such that 𝑦𝑦 ∣ 𝑎𝑎 𝑎 2𝑏𝑏 and 𝑦𝑥 ∣ 𝑎𝑎 𝑎 2𝑏𝑏.
To �ind the solution with the least 𝑎𝑎 𝑎 𝑏𝑏 value we
imagine the line 𝑎𝑎 𝑎 𝑏𝑏 𝑥 𝑎𝑎 drawn for increasing
values of 𝑎𝑎 (starting with 𝑎𝑎 𝑥 𝑘), advancing across
the plane;wewant the least value of𝑎𝑎 forwhich the
line passes through one of the heavy dots. It is clear
that the point which this line will pass through is
the one marked ‘Desired point’ in the graph.
From the graph we can also make out the next
smallest value taken by 𝑎𝑎 𝑎 𝑏𝑏 (after 28). It is

clearly 22 𝑎 𝑦𝑦 𝑥 𝑥𝑥. And the one after that is
2𝑦 𝑎 𝑦7 𝑥 𝑥8.
Remark. The graph reveals an important feature
of the problem which the purely algebraic solution
did not: the fact that the pairs (𝑎𝑎𝑘 𝑏𝑏𝑎 of
non-negative integers which satisfy the given
conditions fall on a family of lines with slope𝑎6.
Thus, we have the points (2𝑥𝑘 5𝑎, (22𝑘 𝑦𝑦𝑎, (2𝑦𝑘 𝑦7𝑎,
…which lie on the line 6𝑎𝑎 𝑎 𝑏𝑏 𝑥 𝑦𝑘𝑥; the points
(𝑘7𝑘 𝑘𝑎, (𝑘6𝑘 𝑦𝑘𝑎, (𝑘5𝑘 𝑦6𝑎, (𝑘𝑘𝑘 22𝑎, …which lie on
the line 6𝑎𝑎 𝑎 𝑏𝑏 𝑥 286 𝑥 2 𝑎 𝑦𝑘𝑥; and so on.
(These lines have been shown in green.) Therefore
we have the following interesting result which is
far from obvious:
If 𝑎𝑎 and 𝑏𝑏 are non-negative integers such that
𝑦𝑦 ∣ 𝑎𝑎 𝑎 2𝑏𝑏 and 𝑦𝑥 ∣ 𝑎𝑎 𝑎 2𝑏𝑏, then we have
𝑦𝑘𝑥 ∣ 6𝑎𝑎 𝑎 𝑏𝑏.
It is a nice exercise to prove this property
algebraically, without recourse to the graph.
In closing we make the following remark: Graphs
— and pictures in general — often allow us to see
things, to spot properties of various kinds. Once
seen, they may be proved rigorously using algebra.
�ut the initial seeing (a crucial �irst step) is far
more dif�icult to come by if one sticks only to
algebra. Herein lie the importance and power of
diagrams and well drawn pictures.

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

a

b

Desired point

Figure 1.

60 At Right Angles ∣ Vol. 1, No. 3, June 2013


