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This continues the ‘Proof’ column begun in the last issue. In this ‘episode’ too  
we study some problems from number theory; more specifically, from  
patterns generated by sums of consecutive numbers.

Shailesh Shirali

Sums of consecutive numbers
Few of us would be impressed by the relation

1 + 2 = 3,

but when we set it alongside the following:

4 + 5 + 6 = 7 + 8,

our eyebrows go up a bit. And they climb up very much further
if we list the following:

9 + 10 + 11 + 12 = 13 + 14 + 15.

At this point the mathematician in us will surely demand the
clear statement of some general relation, and its proof as well.
Let us respond to this challenge.
Note the se�uence of �irst numbers in these relations: 1, 4, 9, ….
�t is clear that the �irst number in the 𝑛𝑛𝑛𝑛�� relation is 𝑛𝑛𝑛𝑛�. Noting
the number of numbers on the left side and the right side in the
relations (2, 3, 4, …on the left side, and 1, 2, 3, …on the right
side), it appears that we are claiming the following:

For each positive integer 𝑛𝑛𝑛𝑛, the sum of 𝑛𝑛𝑛𝑛 + 1
consecutive numbers starting with 𝑛𝑛𝑛𝑛� is equal to the
sum of the next 𝑛𝑛𝑛𝑛 consecutive numbers.

For 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 the claim is that 16+ 17+ 18+ 19+ 20
is equal to 21 + 22 + 23 + 2𝑛𝑛, and this is true
(each sum is 90). How do we check whether this
claim is true for every 𝑛𝑛𝑛𝑛?
Let's look more closely at the statements. In the
statement relating 9 + 10 + 11 + 12 to
13 + 1𝑛𝑛 + 15, note that on the left side the �irst
number in the list is 9 𝑛𝑛 3� and the last number is
12 𝑛𝑛 3� + 3. In the statement relating
16 + 17 + 18 + 19 + 20 to 21 + 22 + 23 + 2𝑛𝑛,
note that on the left side the �irst number in the
list is 16 𝑛𝑛 𝑛𝑛� and the last number is 20 𝑛𝑛 𝑛𝑛� + 𝑛𝑛.
The pattern is clear: in the 𝑛𝑛𝑛𝑛�� statement, on the
left side the �irst number in the list is 𝑛𝑛𝑛𝑛�, and the
last number is 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛. Also, there are 𝑛𝑛𝑛𝑛 + 1
numbers. Using the well-known rule for the sum
of the terms of an arithmetic progression (“half
the sum of the �irst term and the last term, times
the number of terms”), we see that the sum of the
(𝑛𝑛𝑛𝑛 + 1𝑛𝑛 numbers on the left side is

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛𝑛𝑛
2 × (𝑛𝑛𝑛𝑛 + 1𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 1𝑛𝑛(2𝑛𝑛𝑛𝑛 + 1𝑛𝑛

2 .

How about the sum on the right side? The �irst
number in the list is clearly the number following
the last number on the left side, and therefore it is
𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1; and the last number is the one
preceding the �irst number of the next such
relation, i.e., the predecessor of (𝑛𝑛𝑛𝑛 + 1𝑛𝑛�; hence it
is (𝑛𝑛𝑛𝑛 + 1𝑛𝑛� − 1 𝑛𝑛 𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛. As there are 𝑛𝑛𝑛𝑛
numbers, their sum is

(𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1𝑛𝑛 + (𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛𝑛𝑛
2 × 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛(2𝑛𝑛𝑛𝑛� + 3𝑛𝑛𝑛𝑛 + 1𝑛𝑛

2

𝑛𝑛 𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 1𝑛𝑛(2𝑛𝑛𝑛𝑛 + 1𝑛𝑛
2 .

We have obtained the same expression as earlier,
so the two sums are equal. Hence proved.

Amore informal approach
Here is a more informal way of arguing. Consider
the two sets {9, 10, 11, 12} and {13, 1𝑛𝑛, 15}. If we
divide the last number (12) of the �irst set into
three equal parts of 𝑛𝑛 each (12 ÷ 3 𝑛𝑛 𝑛𝑛), and add
one part to each of the other numbers in the set,
we get, from 9, 10, 11, the numbers 9 + 𝑛𝑛 𝑛𝑛 13,
10 + 𝑛𝑛 𝑛𝑛 1𝑛𝑛, 11 + 𝑛𝑛 𝑛𝑛 15. So it will naturally be
the case that 9 + 10 + 11 + 12 is equal to
13 + 1𝑛𝑛 + 15.
Similarly, if we take the two sets
{16, 17, 18, 19, 20} and {21, 22, 23, 2𝑛𝑛}, divide the
last number in the �irst set into four equal parts of
5 each and add one part to each of the other

numbers in the set, we get, from {16, 17, 18, 19}
the set {21, 22, 23, 2𝑛𝑛}. So it will naturally be the
case that 16 + 17 + 18 + 19 + 20 is equal to
21 + 22 + 23 + 2𝑛𝑛.
In the general case we have the two sets

𝐴𝐴𝐴𝐴 𝑛𝑛 {𝑛𝑛𝑛𝑛�, 𝑛𝑛𝑛𝑛� + 1, 𝑛𝑛𝑛𝑛� + 2, … , 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛},
𝐵𝐵𝐵𝐵 𝑛𝑛 {𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1, 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 2, … , 𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛}.

We take away the largest number (𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛) from 𝐴𝐴𝐴𝐴,
divide it into 𝑛𝑛𝑛𝑛 parts of 𝑛𝑛𝑛𝑛 + 1 each, and add this
amount (𝑛𝑛𝑛𝑛 + 1) to each of the remaining numbers;
we get the set 𝐴𝐴𝐴𝐴� given by:

𝐴𝐴𝐴𝐴� 𝑛𝑛 {𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1, 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 2, … , 𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛},

which is exactly the set 𝐵𝐵𝐵𝐵. It follows that the sum
of the numbers in 𝐴𝐴𝐴𝐴 is the same as the sum of the
numbers in 𝐵𝐵𝐵𝐵.

Triangular number identities
Triangular numbers offer a rich environment for
exploration of number patterns and identities.
Bring a group of youngsters to this fertile ground,
and you will soon have a few discoveries on your
hands, including some you may not have seen
earlier.
The triangular numbers (“T-numbers” for short)
are the numbers 1, 1 + 2 𝑛𝑛 3, 1 + 2 + 3 𝑛𝑛 6,
1 + 2 + 3 + 𝑛𝑛 𝑛𝑛 10, …; thus, they are the partial
sums of the sequence of natural numbers. The 𝑛𝑛𝑛𝑛��
such number is denoted by 𝑇𝑇𝑇𝑇� (𝑛𝑛𝑛𝑛 𝑛𝑛 1, 2, 3, …):

𝑇𝑇𝑇𝑇� 𝑛𝑛 1 + 2 + 3 + 𝑛𝑛 +⋯+ (𝑛𝑛𝑛𝑛 − 1𝑛𝑛 + 𝑛𝑛𝑛𝑛,

or in summation notation: 𝑇𝑇𝑇𝑇� 𝑛𝑛
�
∑
���

𝑘𝑘𝑘𝑘. Here are
the �irst ten T-numbers:
𝑇𝑇𝑇𝑇� 𝑛𝑛 1, 𝑇𝑇𝑇𝑇� 𝑛𝑛 3, 𝑇𝑇𝑇𝑇� 𝑛𝑛 6, 𝑇𝑇𝑇𝑇� 𝑛𝑛 10,
𝑇𝑇𝑇𝑇� 𝑛𝑛 15, 𝑇𝑇𝑇𝑇� 𝑛𝑛 21, 𝑇𝑇𝑇𝑇� 𝑛𝑛 28,
𝑇𝑇𝑇𝑇� 𝑛𝑛 36, 𝑇𝑇𝑇𝑇� 𝑛𝑛 𝑛𝑛5, 𝑇𝑇𝑇𝑇�� 𝑛𝑛 55.

It is well known that

𝑇𝑇𝑇𝑇� 𝑛𝑛
𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 1𝑛𝑛

2 ,
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For 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 the claim is that 16+ 17+ 18+ 19+ 20
is equal to 21 + 22 + 23 + 2𝑛𝑛, and this is true
(each sum is 90). How do we check whether this
claim is true for every 𝑛𝑛𝑛𝑛?
Let's look more closely at the statements. In the
statement relating 9 + 10 + 11 + 12 to
13 + 1𝑛𝑛 + 15, note that on the left side the �irst
number in the list is 9 𝑛𝑛 3� and the last number is
12 𝑛𝑛 3� + 3. In the statement relating
16 + 17 + 18 + 19 + 20 to 21 + 22 + 23 + 2𝑛𝑛,
note that on the left side the �irst number in the
list is 16 𝑛𝑛 𝑛𝑛� and the last number is 20 𝑛𝑛 𝑛𝑛� + 𝑛𝑛.
The pattern is clear: in the 𝑛𝑛𝑛𝑛�� statement, on the
left side the �irst number in the list is 𝑛𝑛𝑛𝑛�, and the
last number is 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛. Also, there are 𝑛𝑛𝑛𝑛 + 1
numbers. Using the well-known rule for the sum
of the terms of an arithmetic progression (“half
the sum of the �irst term and the last term, times
the number of terms”), we see that the sum of the
(𝑛𝑛𝑛𝑛 + 1𝑛𝑛 numbers on the left side is

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛𝑛𝑛
2 × (𝑛𝑛𝑛𝑛 + 1𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 1𝑛𝑛(2𝑛𝑛𝑛𝑛 + 1𝑛𝑛

2 .

How about the sum on the right side? The �irst
number in the list is clearly the number following
the last number on the left side, and therefore it is
𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1; and the last number is the one
preceding the �irst number of the next such
relation, i.e., the predecessor of (𝑛𝑛𝑛𝑛 + 1𝑛𝑛�; hence it
is (𝑛𝑛𝑛𝑛 + 1𝑛𝑛� − 1 𝑛𝑛 𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛. As there are 𝑛𝑛𝑛𝑛
numbers, their sum is

(𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1𝑛𝑛 + (𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛𝑛𝑛
2 × 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛𝑛𝑛(2𝑛𝑛𝑛𝑛� + 3𝑛𝑛𝑛𝑛 + 1𝑛𝑛

2

𝑛𝑛 𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 1𝑛𝑛(2𝑛𝑛𝑛𝑛 + 1𝑛𝑛
2 .

We have obtained the same expression as earlier,
so the two sums are equal. Hence proved.

Amore informal approach
Here is a more informal way of arguing. Consider
the two sets {9, 10, 11, 12} and {13, 1𝑛𝑛, 15}. If we
divide the last number (12) of the �irst set into
three equal parts of 𝑛𝑛 each (12 ÷ 3 𝑛𝑛 𝑛𝑛), and add
one part to each of the other numbers in the set,
we get, from 9, 10, 11, the numbers 9 + 𝑛𝑛 𝑛𝑛 13,
10 + 𝑛𝑛 𝑛𝑛 1𝑛𝑛, 11 + 𝑛𝑛 𝑛𝑛 15. So it will naturally be
the case that 9 + 10 + 11 + 12 is equal to
13 + 1𝑛𝑛 + 15.
Similarly, if we take the two sets
{16, 17, 18, 19, 20} and {21, 22, 23, 2𝑛𝑛}, divide the
last number in the �irst set into four equal parts of
5 each and add one part to each of the other

numbers in the set, we get, from {16, 17, 18, 19}
the set {21, 22, 23, 2𝑛𝑛}. So it will naturally be the
case that 16 + 17 + 18 + 19 + 20 is equal to
21 + 22 + 23 + 2𝑛𝑛.
In the general case we have the two sets

𝐴𝐴𝐴𝐴 𝑛𝑛 {𝑛𝑛𝑛𝑛�, 𝑛𝑛𝑛𝑛� + 1, 𝑛𝑛𝑛𝑛� + 2, … , 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛},
𝐵𝐵𝐵𝐵 𝑛𝑛 {𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1, 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 2, … , 𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛}.

We take away the largest number (𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛) from 𝐴𝐴𝐴𝐴,
divide it into 𝑛𝑛𝑛𝑛 parts of 𝑛𝑛𝑛𝑛 + 1 each, and add this
amount (𝑛𝑛𝑛𝑛 + 1) to each of the remaining numbers;
we get the set 𝐴𝐴𝐴𝐴� given by:

𝐴𝐴𝐴𝐴� 𝑛𝑛 {𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 1, 𝑛𝑛𝑛𝑛� + 𝑛𝑛𝑛𝑛 + 2, … , 𝑛𝑛𝑛𝑛� + 2𝑛𝑛𝑛𝑛},

which is exactly the set 𝐵𝐵𝐵𝐵. It follows that the sum
of the numbers in 𝐴𝐴𝐴𝐴 is the same as the sum of the
numbers in 𝐵𝐵𝐵𝐵.

Triangular number identities
Triangular numbers offer a rich environment for
exploration of number patterns and identities.
Bring a group of youngsters to this fertile ground,
and you will soon have a few discoveries on your
hands, including some you may not have seen
earlier.
The triangular numbers (“T-numbers” for short)
are the numbers 1, 1 + 2 𝑛𝑛 3, 1 + 2 + 3 𝑛𝑛 6,
1 + 2 + 3 + 𝑛𝑛 𝑛𝑛 10, …; thus, they are the partial
sums of the sequence of natural numbers. The 𝑛𝑛𝑛𝑛��
such number is denoted by 𝑇𝑇𝑇𝑇� (𝑛𝑛𝑛𝑛 𝑛𝑛 1, 2, 3, …):

𝑇𝑇𝑇𝑇� 𝑛𝑛 1 + 2 + 3 + 𝑛𝑛 +⋯+ (𝑛𝑛𝑛𝑛 − 1𝑛𝑛 + 𝑛𝑛𝑛𝑛,

or in summation notation: 𝑇𝑇𝑇𝑇� 𝑛𝑛
�
∑
���

𝑘𝑘𝑘𝑘. Here are
the �irst ten T-numbers:
𝑇𝑇𝑇𝑇� 𝑛𝑛 1, 𝑇𝑇𝑇𝑇� 𝑛𝑛 3, 𝑇𝑇𝑇𝑇� 𝑛𝑛 6, 𝑇𝑇𝑇𝑇� 𝑛𝑛 10,
𝑇𝑇𝑇𝑇� 𝑛𝑛 15, 𝑇𝑇𝑇𝑇� 𝑛𝑛 21, 𝑇𝑇𝑇𝑇� 𝑛𝑛 28,
𝑇𝑇𝑇𝑇� 𝑛𝑛 36, 𝑇𝑇𝑇𝑇� 𝑛𝑛 𝑛𝑛5, 𝑇𝑇𝑇𝑇�� 𝑛𝑛 55.

It is well known that

𝑇𝑇𝑇𝑇� 𝑛𝑛
𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 1𝑛𝑛
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and there are several ways of proving this relation
alone. Here are some pretty relations that
children quickly discover for themselves:
1 The sum of any two consecutive T-numbers is a
perfect square.

For example, 𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇� = 4 = 2� and
𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇� = 49 = 7�.
2 If 𝑥𝑥𝑥𝑥 is a T-number, then 8𝑥𝑥𝑥𝑥 + 𝑥𝑥 is a perfect square.
Conversely, if 8𝑥𝑥𝑥𝑥 + 𝑥𝑥 is an odd perfect square, then
𝑥𝑥𝑥𝑥 is a T-number. Otherwise expressed: if 𝑥𝑥𝑥𝑥 is an odd
perfect square, then (𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥8 is a T-number.

For example, 3 is a T-number, and
8 × 3 + 𝑥𝑥 = 25 = 5� is a perfect square. Similarly,
8𝑥𝑥 is an odd perfect square, and (8𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥8 = 𝑥𝑥0
is a T-number.
3 If 𝑥𝑥𝑥𝑥 is a T-number, then so is 9𝑥𝑥𝑥𝑥 + 𝑥𝑥.
For example, take the T-numbers 3, 𝑥𝑥0 and 36.
Multiplying them by 9 and adding 𝑥𝑥we get the
numbers 28, 9𝑥𝑥 and 325. It remains to check that
each of these is a T-number; indeed, they are:
28 = 𝑇𝑇𝑇𝑇�, 9𝑥𝑥 = 𝑇𝑇𝑇𝑇�� and 325 = 𝑇𝑇𝑇𝑇��.
The next challenge is to get the children to �ind
proofs of these various relations. We now take up
this theme.

“The sum of two consecutive T-numbers
is a perfect square.”:
Many different approaches are possible. Perhaps
the most direct way is the one based on ‘pure
algebra’. We know that 𝑇𝑇𝑇𝑇� = �

�𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥. So:

𝑇𝑇𝑇𝑇���+𝑇𝑇𝑇𝑇� =
𝑥𝑥
2(𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛+

𝑥𝑥
2𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛+𝑥𝑥𝑥𝑥 =

𝑥𝑥
2𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥+𝑛𝑛𝑛𝑛+𝑥𝑥𝑥𝑥

= 𝑥𝑥
2𝑛𝑛𝑛𝑛 × 2𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛�.

Hence the sum of the (𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑥𝑥�� and 𝑛𝑛𝑛𝑛�� triangular
numbers is the 𝑛𝑛𝑛𝑛�� perfect square.
Other approaches: But it is fun to seek other ways.
Here is a way which draws on the de�inition of 𝑇𝑇𝑇𝑇�
as the sum of the �irst 𝑛𝑛𝑛𝑛 positive integers together
with the well-known and often-used fact that the
sum of the �irst 𝑛𝑛𝑛𝑛 odd positive integers equals 𝑛𝑛𝑛𝑛�.
These two facts acting in concert with another
simple fact —that each odd number is the sum of
two consecutive numbers (e.g., 5 = 2 + 3) —yield
a nice proof; all we need to do is re-bracket the

numbers and add them in a slightly different
order. We illustrate the idea for 𝑛𝑛𝑛𝑛 = 3:

3� = 𝑥𝑥 + 3 + 5 = (0 + 𝑥𝑥𝑥𝑥 + (𝑥𝑥 + 2𝑥𝑥 + (2 + 3𝑥𝑥
= (0 + 𝑥𝑥 + 2𝑥𝑥 + (𝑥𝑥 + 2 + 3𝑥𝑥
= 𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇�.

Similarly, consider 𝑛𝑛𝑛𝑛 = 5:

5� = 𝑥𝑥 + 3 + 5 + 7 + 9
= (0 + 𝑥𝑥𝑥𝑥 + (𝑥𝑥 + 2𝑥𝑥 + (2 + 3𝑥𝑥 + (3 + 4𝑥𝑥 + (4 + 5𝑥𝑥
= (0 + 𝑥𝑥 + 2 + 3 + 4𝑥𝑥 + (𝑥𝑥 + 2 + 3 + 4 + 5𝑥𝑥
= 𝑇𝑇𝑇𝑇� + 𝑇𝑇𝑇𝑇�.

Without having to elaborate on the details, it
should be clear that such a re-arrangement of
summands will always work. But for those who
are keen on seeing how the idea can be expressed
symbolically, here is how we do it:

𝑛𝑛𝑛𝑛� =
�

�
���

(2𝑘𝑘𝑘𝑘 𝑥𝑥 𝑥𝑥𝑥𝑥 =
�

�
���

�(𝑘𝑘𝑘𝑘 𝑥𝑥 𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑘𝑘𝑘

=
�

�
���

(𝑘𝑘𝑘𝑘 𝑥𝑥 𝑥𝑥𝑥𝑥 +
�

�
���

𝑘𝑘𝑘𝑘

=
���

�
���

𝑘𝑘𝑘𝑘 +
�

�
���

𝑘𝑘𝑘𝑘

= 𝑇𝑇𝑇𝑇��� + 𝑇𝑇𝑇𝑇�.

A pictorial way: There's even a way of expressing
the relation using pictures! We regard the
numbers 𝑇𝑇𝑇𝑇��� and 𝑇𝑇𝑇𝑇� as representing the areas of
two staircase-shaped polygons as depicted in
Figure 1, which show the polygons for 𝑛𝑛𝑛𝑛 = 6.
�bserve how neatly they �it together to form a
6 × 6 square.
Though the construction has been shown only for
the speci�ic case 𝑛𝑛𝑛𝑛 = 6, it is not hard to see that
the same idea will work for any 𝑛𝑛𝑛𝑛.

“8 times a T-number plus 1 is a perfect
square.”
Here is an algebraic proof. We know that
𝑇𝑇𝑇𝑇� = �

�𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥. So if 𝑥𝑥𝑥𝑥 is a T-number then
𝑥𝑥𝑥𝑥 = �

�𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥 for some positive integer 𝑛𝑛𝑛𝑛.
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But in this case we have:

8𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 8 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛
2 𝑥𝑥 𝑥𝑥 𝑥𝑥 4𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛 𝑥𝑥 𝑥𝑥

𝑥𝑥 4𝑛𝑛𝑛𝑛� 𝑥𝑥 4𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑛𝑛2𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛�.

Proof of the converse: Suppose that 8𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 is an
odd perfect square. Then 8𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑛𝑛2𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛� for
some integer 𝑛𝑛𝑛𝑛. Hence:

𝑥𝑥𝑥𝑥 𝑥𝑥 𝑛𝑛2𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛� − 𝑥𝑥
8 𝑥𝑥 4𝑛𝑛𝑛𝑛� 𝑥𝑥 4𝑛𝑛𝑛𝑛

8 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛
2 𝑥𝑥 𝑇𝑇𝑇𝑇�.

This property provides a simple way of checking
whether a given number 𝑥𝑥𝑥𝑥 is a T-number.
(Example: The number 3003 is a T-number,
because 8 𝑥𝑥 3003 𝑥𝑥 𝑥𝑥 𝑥𝑥 24025 𝑥𝑥 𝑥𝑥55�.)
A pictorial way: As earlier there is an elegant way
of depicting the relation “If 𝑥𝑥𝑥𝑥 is a T-number, then
8𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 is a perfect square”. We know that if 𝑥𝑥𝑥𝑥 is a
T-number, then 𝑥𝑥𝑥𝑥 𝑥𝑥 �

�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛 for some integer
𝑛𝑛𝑛𝑛 𝑛𝑛 0. Otherwise put, if 𝑥𝑥𝑥𝑥 is a T-number, then
2𝑥𝑥𝑥𝑥 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛 for some integer 𝑛𝑛𝑛𝑛 𝑛𝑛 0. Hence we
may associate with 2𝑥𝑥𝑥𝑥 a rectangle of dimensions
𝑛𝑛𝑛𝑛 𝑥𝑥 𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛. Note that the length of this rectangle

exceeds the breadth by 𝑥𝑥 unit. (This fact has a
bearing on the outcome as we shall see shortly.)
Four such rectangles may be �itted together as
shown in Figure 2, in which we have taken 𝑛𝑛𝑛𝑛 𝑥𝑥 3.

The four rectangles neatly enclose a square
measuring 𝑥𝑥 𝑥𝑥 𝑥𝑥 in the centre, since 4 − 3 𝑥𝑥 𝑥𝑥. We
see from this that 8𝑇𝑇𝑇𝑇� 𝑥𝑥 𝑥𝑥 is a perfect square,
indeed, 8𝑇𝑇𝑇𝑇� 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑛𝑛4 𝑥𝑥 3𝑛𝑛�. In general we have:
8𝑇𝑇𝑇𝑇� 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥𝑛𝑛 𝑥𝑥 𝑛𝑛𝑛𝑛𝑥

�
.

The third property
It remains to show this: If 𝑥𝑥𝑥𝑥 is a T-number, then so
is 9𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥. But we shall leave the proof to you.
(Hint. Use the property: “𝑛𝑛𝑛𝑛 is a T-number if and
only if 8𝑛𝑛𝑛𝑛 𝑥𝑥 𝑥𝑥 is a perfect square”.) Indeed we
shall challenge you with the following problem:

The pair of integers 𝑎𝑎𝑎𝑎 𝑥𝑥 9 and 𝑏𝑏𝑏𝑏 𝑥𝑥 𝑥𝑥
has the property that if 𝑥𝑥𝑥𝑥 is a T-number,
then so is 𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 𝑥𝑥 𝑏𝑏𝑏𝑏. Find all such pairs of
integers.

Figure 1. Illustrating “why” T5 +T6 = 62

Figure 2. Illustrating ‘why’ 8T3 +1 is a 
perfect square
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