
Since 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 are positive integers, 𝑛𝑛 𝑛 𝑛 and
𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎  . So 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 is a product of
two integers both of which exceed 1. Therefore
𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 is composite.
Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33, �contains in�initely many prime numbers.

Another way of expressing this is: Show that there
are in�initely many primes of the form 4𝑘𝑘 𝑘𝑘 . It so
happens that the corresponding problem with
4𝑘𝑘 𝑘 𝑘 instead of 4𝑘𝑘 𝑘𝑘  is easier to solve. This is
because of the following property: The product of
numbers all of the form 4𝑘𝑘 𝑘𝑘  is also of that form.

From this it follows: If an odd positive integer 𝑛𝑛 is
of the form 4𝑘𝑘 𝑘 𝑘, then it has at least one prime
factor of that form.
Now consider the primes of the form 4𝑘𝑘 𝑘 𝑘. They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say 𝑝𝑝. Now construct the following number
𝑛𝑛:

𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛  𝑛𝑛
This is of the form 4𝑘𝑘 𝑘 𝑘, so it has a prime factor
𝑞𝑞 of this form. The prime 𝑞𝑞 cannot be any of 3, 7,
11, …, 𝑝𝑝, as 𝑛𝑛 is not divisible by these primes. So
we have found a new prime of the form 4𝑘𝑘 𝑘 𝑘.
Hence there cannot be a ‘last prime’ of this form.
Therefore there are in�initely many primes of the
form 4𝑘𝑘 𝑘 𝑘.
This method of proof does not work for primes of
the form 4𝑘𝑘 𝑘𝑘  because we cannot make a
statement like this one: ‘If 𝑛𝑛 is of the form 4𝑘𝑘 𝑘𝑘 ,
then it has at least one prime factor of that form.’
(An easy counterexample to this hypothesis is the
number 21=  3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the
following at-�irst-sight-surprising fact which we
do not prove here: The prime factors of a number
of the form 4𝑚𝑚� +1  are all of the form 4𝑘𝑘 𝑘𝑘 .
Examples: 4 × 4� +1=   65 = 5 ×1 3, and
4 × 6� +1=1   45 = 5 ×2 9. Taking this to be a
fact, the rest of the proof is easy.
Suppose that there is a last prime 𝑝𝑝 of the form
4𝑘𝑘 𝑘𝑘 . We now construct the number
𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛� +1 . The prime
factors of 𝑛𝑛 are all of the form 4𝑘𝑘 𝑘𝑘  and distinct

from 5, 13, 17, …, 𝑝𝑝. Hence 𝑝𝑝 cannot be the last
such prime. So there are in�initely many such
primes.

Solution to problem III-1-S.3 In △𝐴𝐴𝐴𝐴𝐴𝐴, the
midpoint of AB is 𝐷𝐷, and 𝐸𝐸 is the point of trisection
of 𝐵𝐵𝐵𝐵 closer to 𝐶𝐶. Given that ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴,
determine the magnitude of ∠𝐵𝐵𝐵𝐵𝐵𝐵.
Let 𝐾𝐾 be the point of intersection of 𝐶𝐶𝐶𝐶 and 𝐴𝐴𝐴𝐴.
(See Figure 1.) Observe that in triangle 𝐴𝐴𝐴𝐴𝐴𝐴,
∠𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  𝐾𝐾𝐾𝐾𝐾𝐾. Hence 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Let 𝐹𝐹 be the
midpoint of 𝐵𝐵𝐵𝐵. Note that 𝐷𝐷𝐷𝐷 is parallel to 𝐴𝐴𝐴𝐴. In
triangle 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐸𝐸 is the midpoint of 𝐶𝐶𝐶𝐶, and 𝐸𝐸𝐸𝐸 is
parallel to 𝐷𝐷𝐷𝐷. Therefore 𝐾𝐾 is the midpoint of 𝐶𝐶𝐶𝐶.
Hence in triangle 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    . It follows
that ∠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶∘.
Solution to problem III-1-S.4 Given a △𝐴𝐴𝐴𝐴𝐴𝐴,
does there necessarily exist a point 𝐷𝐷 on side 𝐵𝐵𝐵𝐵
such that △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴 have equal perimeter?
If such a point 𝐷𝐷 exists, then we can similarly obtain
points 𝐸𝐸 and 𝐹𝐹 on 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴, respectively, such
that 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 bisect the perimeter of 𝐴𝐴𝐴𝐴𝐴𝐴. Are
the lines 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 concurrent?

Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵  , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶   and 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 . Let 𝐷𝐷 be a point
on 𝐵𝐵𝐵𝐵, between 𝐵𝐵 and 𝐶𝐶, such that 𝐵𝐵𝐵𝐵𝐵  𝐵𝐵 and
𝐶𝐶𝐶𝐶𝐶  𝐶𝐶. 𝐴𝐴𝐴𝐴 bisects the perimeter of triangle 𝐴𝐴𝐴𝐴𝐴𝐴
if and only if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥        𝑥𝑥, where
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      . Thus 𝑥𝑥𝑥  𝑥𝑥 𝑥𝑥𝑥  and 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦    .
Since 𝑠𝑠𝑠𝑠𝑠   and 𝑠𝑠𝑠𝑠𝑠   are positive quantities whose
sum is 𝑎𝑎, it is possible to �ind a point 𝐷𝐷 on 𝐵𝐵𝐵𝐵 such
that 𝐵𝐵𝐵𝐵𝐵  𝐵𝐵 and 𝐶𝐶𝐶𝐶𝐶  𝐶𝐶. See Figure 2. (More
precisely, 𝐷𝐷 is the point where the ex-circle
opposite vertex 𝐴𝐴 touches 𝐵𝐵𝐵𝐵.)
For the second part, concurrency of the three line
segments 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶 follows from the converse of
Ceva‘s theorem. (For we have, in the same way:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    , 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸    , 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    , 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    .
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Since are positive integers, and
. So is a product of

two integers both of which exceed 1. Therefore
is composite.

Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33

Another way of expressing this is: Show that there
. It so

happens that the corresponding problem with
instead of is easier to solve. This is

because of the following property: The product of
numbers all of the form is also of that form.

From this it follows: If an odd positive integer is
of the form , then it has at least one prime
factor of that form.

Now consider the primes of the form . They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say . Now construct the following number

:

This is of the form , so it has a prime factor
of this form. The prime cannot be any of 3, 7,

11, …, , as is not divisible by these primes. So
we have found a new prime of the form .
Hence there cannot be a ‘last prime’ of this form.

form .

This method of proof does not work for primes of
the form because we cannot make a
statement like this one: “If is of the form ,
then it has at least one prime factor of that form.”
(An easy counterexample to this hypothesis is the
number 21 = 3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the

do not prove here: The prime factors of a number
of the form + 1 are all of the form .
Examples: 4 × 4 + 1 = 65 = 5 × 13, and
4 × 6 + 1 = 145 = 5 × 29. Taking this to be a
fact, the rest of the proo�is easy.

Suppose that there is a last prime of the form
. We now construct the number

+ 1. The prime
factors of are all of the form and distinct

from 5, 13, 17, …, . Hence cannot be the last

primes.

Solution to problem III-1-S.3 In , the
midpoint of AB is , and is the point of trisection
of closer to . Given that ,
determine the magnitude of .

Let be the point o�intersection of and .
(See Figure 1.) Observe that in triangle ,

. Hence . Let be the
midpoint of . Note that is parallel to . In
triangle , is the midpoint of , and is
parallel to . Therefore is the midpoint of .
Hence in triangle , . It follows
that ∘.

Solution to problem III-1-S.4 Given a ,
does there necessarily exist a point on side
such that and have equal perimeter?
If such a point exists, then we can similarly obtain
points and on and , respectively, such
that and bisect the perimeter of . Are
the lines concurrent?

Let , and . Let be a point
on , between and , such that and

. bisects the perimeter of triangle
if and only if , where

. Thus and .
Since and are positive quantities whose
sum is on such
that and . See Figure 2. (More
precisely, is the point where the ex-circle
opposite vertex touches .)

For the second part, concurrency of the three line
segments , , follows from the converse of
Ceva‘s theorem. (For we have, in the same way:

, , , .

3

a(n + 1)2 + b(n + 1) + c

Problems for Solution

Problem III-2-S.1
Let be a positive integer not divisible by 2 nor by
5. Prove that there exists a positive integer ,
depending on , such that the number 111 … 1,
where the digit 1 is repeated times, is divisible
by .

Problem III-2-S.2
Let ℝ be the set of all real numbers, and let be a
real number, . Determine a function

such that , for all
.

Problem III-2-S.3
Determine all three-digit numbers such that: (i)

is divisible by 11, (ii) is equal to the sum
of the squares of the digits of . (This problem
appeared in the International Mathematical
Olympiad 1960.)

Problem III-2-S.4
You are given a right circular conical vessel of
height
ℎ with the apex downwards. Then it is
turned upside down and it is observed that water
level is at a height ℎ from the base. Prove that

ℎ + ( ) .

Can ℎ , ℎ and all be positive integers?

Problem III-2-S.5
Let }

= 5 and:

|, for all

Prove that = 1
positive integers .

Solutions of Problems in Issue-III-1

Solution to problem III-1-S.1 Let
, where are positive

integers. Show that there exists an integer such
that is a composite number.

We shall prove this by actually exhibiting such an
integer . Let ; then . Now
consider the value of :
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Problems for Solution

Solutions of problems in Issue-III-1



Since 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 are positive integers, 𝑛𝑛 𝑛 𝑛 and
𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎  . So 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 is a product of
two integers both of which exceed 1. Therefore
𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 is composite.
Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33, �contains in�initely many prime numbers.

Another way of expressing this is: Show that there
are in�initely many primes of the form 4𝑘𝑘 𝑘𝑘 . It so
happens that the corresponding problem with
4𝑘𝑘 𝑘 𝑘 instead of 4𝑘𝑘 𝑘𝑘  is easier to solve. This is
because of the following property: The product of
numbers all of the form 4𝑘𝑘 𝑘𝑘  is also of that form.

From this it follows: If an odd positive integer 𝑛𝑛 is
of the form 4𝑘𝑘 𝑘 𝑘, then it has at least one prime
factor of that form.
Now consider the primes of the form 4𝑘𝑘 𝑘 𝑘. They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say 𝑝𝑝. Now construct the following number
𝑛𝑛:

𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛  𝑛𝑛
This is of the form 4𝑘𝑘 𝑘 𝑘, so it has a prime factor
𝑞𝑞 of this form. The prime 𝑞𝑞 cannot be any of 3, 7,
11, …, 𝑝𝑝, as 𝑛𝑛 is not divisible by these primes. So
we have found a new prime of the form 4𝑘𝑘 𝑘 𝑘.
Hence there cannot be a ‘last prime’ of this form.
Therefore there are in�initely many primes of the
form 4𝑘𝑘 𝑘 𝑘.
This method of proof does not work for primes of
the form 4𝑘𝑘 𝑘𝑘  because we cannot make a
statement like this one: ‘If 𝑛𝑛 is of the form 4𝑘𝑘 𝑘𝑘 ,
then it has at least one prime factor of that form.’
(An easy counterexample to this hypothesis is the
number 21=  3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the
following at-�irst-sight-surprising fact which we
do not prove here: The prime factors of a number
of the form 4𝑚𝑚� +1  are all of the form 4𝑘𝑘 𝑘𝑘 .
Examples: 4 × 4� +1=   65 = 5 ×1 3, and
4 × 6� +1=1   45 = 5 ×2 9. Taking this to be a
fact, the rest of the proof is easy.
Suppose that there is a last prime 𝑝𝑝 of the form
4𝑘𝑘 𝑘𝑘 . We now construct the number
𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛� +1 . The prime
factors of 𝑛𝑛 are all of the form 4𝑘𝑘 𝑘𝑘  and distinct

from 5, 13, 17, …, 𝑝𝑝. Hence 𝑝𝑝 cannot be the last
such prime. So there are in�initely many such
primes.

Solution to problem III-1-S.3 In △𝐴𝐴𝐴𝐴𝐴𝐴, the
midpoint of AB is 𝐷𝐷, and 𝐸𝐸 is the point of trisection
of 𝐵𝐵𝐵𝐵 closer to 𝐶𝐶. Given that ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴,
determine the magnitude of ∠𝐵𝐵𝐵𝐵𝐵𝐵.
Let 𝐾𝐾 be the point of intersection of 𝐶𝐶𝐶𝐶 and 𝐴𝐴𝐴𝐴.
(See Figure 1.) Observe that in triangle 𝐴𝐴𝐴𝐴𝐴𝐴,
∠𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  𝐾𝐾𝐾𝐾𝐾𝐾. Hence 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Let 𝐹𝐹 be the
midpoint of 𝐵𝐵𝐵𝐵. Note that 𝐷𝐷𝐷𝐷 is parallel to 𝐴𝐴𝐴𝐴. In
triangle 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐸𝐸 is the midpoint of 𝐶𝐶𝐶𝐶, and 𝐸𝐸𝐸𝐸 is
parallel to 𝐷𝐷𝐷𝐷. Therefore 𝐾𝐾 is the midpoint of 𝐶𝐶𝐶𝐶.
Hence in triangle 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    . It follows
that ∠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶∘.
Solution to problem III-1-S.4 Given a △𝐴𝐴𝐴𝐴𝐴𝐴,
does there necessarily exist a point 𝐷𝐷 on side 𝐵𝐵𝐵𝐵
such that △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴 have equal perimeter?
If such a point 𝐷𝐷 exists, then we can similarly obtain
points 𝐸𝐸 and 𝐹𝐹 on 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴, respectively, such
that 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 bisect the perimeter of 𝐴𝐴𝐴𝐴𝐴𝐴. Are
the lines 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 concurrent?

Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵  , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶   and 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 . Let 𝐷𝐷 be a point
on 𝐵𝐵𝐵𝐵, between 𝐵𝐵 and 𝐶𝐶, such that 𝐵𝐵𝐵𝐵𝐵  𝐵𝐵 and
𝐶𝐶𝐶𝐶𝐶  𝐶𝐶. 𝐴𝐴𝐴𝐴 bisects the perimeter of triangle 𝐴𝐴𝐴𝐴𝐴𝐴
if and only if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥        𝑥𝑥, where
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      . Thus 𝑥𝑥𝑥  𝑥𝑥 𝑥𝑥𝑥  and 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦    .
Since 𝑠𝑠𝑠𝑠𝑠   and 𝑠𝑠𝑠𝑠𝑠   are positive quantities whose
sum is 𝑎𝑎, it is possible to �ind a point 𝐷𝐷 on 𝐵𝐵𝐵𝐵 such
that 𝐵𝐵𝐵𝐵𝐵  𝐵𝐵 and 𝐶𝐶𝐶𝐶𝐶  𝐶𝐶. See Figure 2. (More
precisely, 𝐷𝐷 is the point where the ex-circle
opposite vertex 𝐴𝐴 touches 𝐵𝐵𝐵𝐵.)
For the second part, concurrency of the three line
segments 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶 follows from the converse of
Ceva‘s theorem. (For we have, in the same way:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    , 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸    , 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    , 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    .
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Since are positive integers, and
. So is a product of

two integers both of which exceed 1. Therefore
is composite.

Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33

Another way of expressing this is: Show that there
. It so

happens that the corresponding problem with
instead of is easier to solve. This is

because of the following property: The product of
numbers all of the form is also of that form.

From this it follows: If an odd positive integer is
of the form , then it has at least one prime
factor of that form.

Now consider the primes of the form . They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say . Now construct the following number

:

This is of the form , so it has a prime factor
of this form. The prime cannot be any of 3, 7,

11, …, , as is not divisible by these primes. So
we have found a new prime of the form .
Hence there cannot be a ‘last prime’ of this form.

form .

This method of proof does not work for primes of
the form because we cannot make a
statement like this one: “If is of the form ,
then it has at least one prime factor of that form.”
(An easy counterexample to this hypothesis is the
number 21 = 3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the

do not prove here: The prime factors of a number
of the form + 1 are all of the form .
Examples: 4 × 4 + 1 = 65 = 5 × 13, and
4 × 6 + 1 = 145 = 5 × 29. Taking this to be a
fact, the rest of the proo�is easy.

Suppose that there is a last prime of the form
. We now construct the number

+ 1. The prime
factors of are all of the form and distinct

from 5, 13, 17, …, . Hence cannot be the last

primes.

Solution to problem III-1-S.3 In , the
midpoint of AB is , and is the point of trisection
of closer to . Given that ,
determine the magnitude of .

Let be the point o�intersection of and .
(See Figure 1.) Observe that in triangle ,

. Hence . Let be the
midpoint of . Note that is parallel to . In
triangle , is the midpoint of , and is
parallel to . Therefore is the midpoint of .
Hence in triangle , . It follows
that ∘.

Solution to problem III-1-S.4 Given a ,
does there necessarily exist a point on side
such that and have equal perimeter?
If such a point exists, then we can similarly obtain
points and on and , respectively, such
that and bisect the perimeter of . Are
the lines concurrent?

Let , and . Let be a point
on , between and , such that and

. bisects the perimeter of triangle
if and only if , where

. Thus and .
Since and are positive quantities whose
sum is on such
that and . See Figure 2. (More
precisely, is the point where the ex-circle
opposite vertex touches .)

For the second part, concurrency of the three line
segments , , follows from the converse of
Ceva‘s theorem. (For we have, in the same way:

, , , .

3

a(n + 1)2 + b(n + 1) + c

Problems for Solution

Problem III-2-S.1
Let be a positive integer not divisible by 2 nor by
5. Prove that there exists a positive integer ,
depending on , such that the number 111 … 1,
where the digit 1 is repeated times, is divisible
by .

Problem III-2-S.2
Let ℝ be the set of all real numbers, and let be a
real number, . Determine a function

such that , for all
.

Problem III-2-S.3
Determine all three-digit numbers such that: (i)

is divisible by 11, (ii) is equal to the sum
of the squares of the digits of . (This problem
appeared in the International Mathematical
Olympiad 1960.)

Problem III-2-S.4
You are given a right circular conical vessel of
height
ℎ with the apex downwards. Then it is
turned upside down and it is observed that water
level is at a height ℎ from the base. Prove that

ℎ + ( ) .

Can ℎ , ℎ and all be positive integers?

Problem III-2-S.5
Let }

= 5 and:

|, for all

Prove that = 1
positive integers .

Solutions of Problems in Issue-III-1

Solution to problem III-1-S.1 Let
, where are positive

integers. Show that there exists an integer such
that is a composite number.

We shall prove this by actually exhibiting such an
integer . Let ; then . Now
consider the value of :

2

FIGURE 1.

Since 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎 are positive integers, 𝑛𝑛 𝑛 𝑛 and
𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎  . So 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 is a product of
two integers both of which exceed 1. Therefore
𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓 is composite.
Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33, �contains in�initely many prime numbers.

Another way of expressing this is: Show that there
are in�initely many primes of the form 4𝑘𝑘 𝑘𝑘 . It so
happens that the corresponding problem with
4𝑘𝑘 𝑘 𝑘 instead of 4𝑘𝑘 𝑘𝑘  is easier to solve. This is
because of the following property: The product of
numbers all of the form 4𝑘𝑘 𝑘𝑘  is also of that form.

From this it follows: If an odd positive integer 𝑛𝑛 is
of the form 4𝑘𝑘 𝑘 𝑘, then it has at least one prime
factor of that form.
Now consider the primes of the form 4𝑘𝑘 𝑘 𝑘. They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say 𝑝𝑝. Now construct the following number
𝑛𝑛:

𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛  𝑛𝑛
This is of the form 4𝑘𝑘 𝑘 𝑘, so it has a prime factor
𝑞𝑞 of this form. The prime 𝑞𝑞 cannot be any of 3, 7,
11, …, 𝑝𝑝, as 𝑛𝑛 is not divisible by these primes. So
we have found a new prime of the form 4𝑘𝑘 𝑘 𝑘.
Hence there cannot be a ‘last prime’ of this form.
Therefore there are in�initely many primes of the
form 4𝑘𝑘 𝑘 𝑘.
This method of proof does not work for primes of
the form 4𝑘𝑘 𝑘𝑘  because we cannot make a
statement like this one: ‘If 𝑛𝑛 is of the form 4𝑘𝑘 𝑘𝑘 ,
then it has at least one prime factor of that form.’
(An easy counterexample to this hypothesis is the
number 21=  3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the
following at-�irst-sight-surprising fact which we
do not prove here: The prime factors of a number
of the form 4𝑚𝑚� +1  are all of the form 4𝑘𝑘 𝑘𝑘 .
Examples: 4 × 4� +1=   65 = 5 ×1 3, and
4 × 6� +1=1   45 = 5 ×2 9. Taking this to be a
fact, the rest of the proof is easy.
Suppose that there is a last prime 𝑝𝑝 of the form
4𝑘𝑘 𝑘𝑘 . We now construct the number
𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛� +1 . The prime
factors of 𝑛𝑛 are all of the form 4𝑘𝑘 𝑘𝑘  and distinct

from 5, 13, 17, …, 𝑝𝑝. Hence 𝑝𝑝 cannot be the last
such prime. So there are in�initely many such
primes.

Solution to problem III-1-S.3 In △𝐴𝐴𝐴𝐴𝐴𝐴, the
midpoint of AB is 𝐷𝐷, and 𝐸𝐸 is the point of trisection
of 𝐵𝐵𝐵𝐵 closer to 𝐶𝐶. Given that ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴,
determine the magnitude of ∠𝐵𝐵𝐵𝐵𝐵𝐵.
Let 𝐾𝐾 be the point of intersection of 𝐶𝐶𝐶𝐶 and 𝐴𝐴𝐴𝐴.
(See Figure 1.) Observe that in triangle 𝐴𝐴𝐴𝐴𝐴𝐴,
∠𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  𝐾𝐾𝐾𝐾𝐾𝐾. Hence 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  . Let 𝐹𝐹 be the
midpoint of 𝐵𝐵𝐵𝐵. Note that 𝐷𝐷𝐷𝐷 is parallel to 𝐴𝐴𝐴𝐴. In
triangle 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐸𝐸 is the midpoint of 𝐶𝐶𝐶𝐶, and 𝐸𝐸𝐸𝐸 is
parallel to 𝐷𝐷𝐷𝐷. Therefore 𝐾𝐾 is the midpoint of 𝐶𝐶𝐶𝐶.
Hence in triangle 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    . It follows
that ∠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    𝐶∘.
Solution to problem III-1-S.4 Given a △𝐴𝐴𝐴𝐴𝐴𝐴,
does there necessarily exist a point 𝐷𝐷 on side 𝐵𝐵𝐵𝐵
such that △𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴 have equal perimeter?
If such a point 𝐷𝐷 exists, then we can similarly obtain
points 𝐸𝐸 and 𝐹𝐹 on 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴, respectively, such
that 𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶 bisect the perimeter of 𝐴𝐴𝐴𝐴𝐴𝐴. Are
the lines 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 concurrent?

Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵  , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶   and 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 . Let 𝐷𝐷 be a point
on 𝐵𝐵𝐵𝐵, between 𝐵𝐵 and 𝐶𝐶, such that 𝐵𝐵𝐵𝐵𝐵  𝐵𝐵 and
𝐶𝐶𝐶𝐶𝐶  𝐶𝐶. 𝐴𝐴𝐴𝐴 bisects the perimeter of triangle 𝐴𝐴𝐴𝐴𝐴𝐴
if and only if 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥        𝑥𝑥, where
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      . Thus 𝑥𝑥𝑥  𝑥𝑥 𝑥𝑥𝑥  and 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦    .
Since 𝑠𝑠𝑠𝑠𝑠   and 𝑠𝑠𝑠𝑠𝑠   are positive quantities whose
sum is 𝑎𝑎, it is possible to �ind a point 𝐷𝐷 on 𝐵𝐵𝐵𝐵 such
that 𝐵𝐵𝐵𝐵𝐵  𝐵𝐵 and 𝐶𝐶𝐶𝐶𝐶  𝐶𝐶. See Figure 2. (More
precisely, 𝐷𝐷 is the point where the ex-circle
opposite vertex 𝐴𝐴 touches 𝐵𝐵𝐵𝐵.)
For the second part, concurrency of the three line
segments 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶 follows from the converse of
Ceva‘s theorem. (For we have, in the same way:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    , 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸    , 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    , 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    .
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Since are positive integers, and
. So is a product of

two integers both of which exceed 1. Therefore
is composite.

Solution to problem III-1-S.2 Show that the
arithmetic progression 1, 5, 9, 13, 17, 21, 25, 29,
33

Another way of expressing this is: Show that there
. It so

happens that the corresponding problem with
instead of is easier to solve. This is

because of the following property: The product of
numbers all of the form is also of that form.

From this it follows: If an odd positive integer is
of the form , then it has at least one prime
factor of that form.

Now consider the primes of the form . They
are: 3, 7, 11, 19, …. Suppose there is a last such
prime, say . Now construct the following number

:

This is of the form , so it has a prime factor
of this form. The prime cannot be any of 3, 7,

11, …, , as is not divisible by these primes. So
we have found a new prime of the form .
Hence there cannot be a ‘last prime’ of this form.

form .

This method of proof does not work for primes of
the form because we cannot make a
statement like this one: “If is of the form ,
then it has at least one prime factor of that form.”
(An easy counterexample to this hypothesis is the
number 21 = 3 × 7.) Some other approach is
needed. This ‘other approach’ is provided by the

do not prove here: The prime factors of a number
of the form + 1 are all of the form .
Examples: 4 × 4 + 1 = 65 = 5 × 13, and
4 × 6 + 1 = 145 = 5 × 29. Taking this to be a
fact, the rest of the proo�is easy.

Suppose that there is a last prime of the form
. We now construct the number

+ 1. The prime
factors of are all of the form and distinct

from 5, 13, 17, …, . Hence cannot be the last

primes.

Solution to problem III-1-S.3 In , the
midpoint of AB is , and is the point of trisection
of closer to . Given that ,
determine the magnitude of .

. Hence . Let be the
midpoint of . Note that is parallel to . In
triangle , is the midpoint of , and is
parallel to . Therefore is the midpoint of .
Hence in triangle , . It follows
that ∘.

Solution to problem III-1-S.4 Given a ,
does there necessarily exist a point on side
such that and have equal perimeter?
If such a point exists, then we can similarly obtain
points and on and , respectively, such
that and bisect the perimeter of . Are
the lines concurrent?

Let , and . Let be a point
on , between and , such that and

. bisects the perimeter of triangle
if and only if , where

. Thus and .
Since and are positive quantities whose
sum is on such
that and . See Figure 2. (More
precisely, is the point where the ex-circle
opposite vertex touches .)

For the second part, concurrency of the three line
segments , , follows from the converse of
Ceva‘s theorem. (For we have, in the same way:

, , , .

3

a(n + 1)2 + b(n + 1) + c

Let be the point of intersection of and .
(See Figure 1.) Observe that in triangle ,
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• , ,

•

•

•

Hence

× × = 1.

The converse of Ceva's theorem states that if

EA = s − c, AF = s − b, FB = s − a.

are points on , , such that the
above equality holds, then , , concur.
Hence the claim.)

Solution to problem III-1-S.5 Let and
. Is 4 + 5 a prime number?

Observe that 4 divides . Let . Now

4 + 5 = 4(4 ) + (5 )

is of the form . But:

Put and . Since both factors
exceed 1, 4 + 5 is composite.
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The converse of Ceva's theorem states that if

EA = s − c, AF = s − b, FB = s − a.

are points on , , such that the
above equality holds, then , , concur.
Hence the claim.)

Solution to problem III-1-S.5 Let and
. Is 4 + 5 a prime number?

Observe that 4 divides . Let . Now

4 + 5 = 4(4 ) + (5 )

is of the form . But:

Put and . Since both factors
exceed 1, 4 + 5 is composite.
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