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(1) Consider the following pair of propositions:
(𝖯𝖯𝖯𝖯) 10� − 1 = 9 × 11.
(𝖰𝖰𝖰𝖰) 𝑛𝑛𝑛𝑛�−1 = (𝑛𝑛𝑛𝑛−1𝑛𝑛(𝑛𝑛𝑛𝑛𝑛𝑛1𝑛𝑛 for all numbers𝑛𝑛𝑛𝑛.
𝖯𝖯𝖯𝖯 is clearly a particular case of 𝖰𝖰𝖰𝖰 in which 𝑛𝑛𝑛𝑛
has been given the value 10; so 𝖯𝖯𝖯𝖯 is a
specialization of 𝖰𝖰𝖰𝖰, while 𝖰𝖰𝖰𝖰 is a
generalization of 𝖯𝖯𝖯𝖯.

(2) Consider the following pair of propositions:
(𝖯𝖯𝖯𝖯) The area of a circle with radius 𝑟𝑟𝑟𝑟 is 𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟�.
(𝖰𝖰𝖰𝖰) The area of an ellipse with semi-axes 𝑎𝑎𝑎𝑎

and 𝑏𝑏𝑏𝑏 is 𝜋𝜋𝜋𝜋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.
𝖯𝖯𝖯𝖯 is a particular case of 𝖰𝖰𝖰𝖰 in which the
semi-axes have equal length 𝑟𝑟𝑟𝑟 (this is so
because the circle is a special case of an
ellipse; see Figure 1); hence 𝖯𝖯𝖯𝖯 is a
specialization of 𝖰𝖰𝖰𝖰, while 𝖰𝖰𝖰𝖰 is a
generalization of 𝖯𝖯𝖯𝖯.

(3) Consider the following statements 𝖯𝖯𝖯𝖯 and 𝖰𝖰𝖰𝖰
which refer to an arbitrary positive integer 𝑛𝑛𝑛𝑛
and the remainder when 𝑛𝑛𝑛𝑛 is divided by 9.
The symbol 𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 denotes the sum of the
digits of 𝑛𝑛𝑛𝑛 when it is written in base ten.
(𝖯𝖯𝖯𝖯) 𝑛𝑛𝑛𝑛 is divisible by 9 if and only if 𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 is

divisible by 9.
(𝖰𝖰𝖰𝖰) The remainder when 𝑛𝑛𝑛𝑛 is divided by 9 is

the same as the remainder when 𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 is
divided by 9.

Statement 𝖯𝖯𝖯𝖯 is the familiar test for divisibility
by 9. Youmay not be familiar with statement

𝖰𝖰𝖰𝖰, but it is true and is proved in exactly the
same way that 𝖯𝖯𝖯𝖯 is proved. Here is an
illustration of 𝖰𝖰𝖰𝖰 in action: if 𝑛𝑛𝑛𝑛 = 1𝑛𝑛𝑛𝑛, then
𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑠𝑠. Please check that 1𝑛𝑛𝑛𝑛 and 1𝑠𝑠
leave the same remainder (namely, 4) under
division by 9.
Here, 𝖯𝖯𝖯𝖯 is a special case of 𝖰𝖰𝖰𝖰, for it
corresponds to the case when the
remainder is 0. So 𝖯𝖯𝖯𝖯 is a specialization of 𝖰𝖰𝖰𝖰,
while 𝖰𝖰𝖰𝖰 is a generalization of 𝖯𝖯𝖯𝖯. (Loosely
speaking, “𝖰𝖰𝖰𝖰 contains 9 times as much
information as 𝖯𝖯𝖯𝖯”.)

(4) Consider the following pair of statements
which refer to a circle 𝜔𝜔𝜔𝜔 with centre 𝑂𝑂𝑂𝑂 and
distinct points 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 on 𝜔𝜔𝜔𝜔.
(𝖯𝖯𝖯𝖯) If 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a diameter of 𝜔𝜔𝜔𝜔, then ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a

right angle; see Figure 2 (a).
(𝖰𝖰𝖰𝖰) If 𝐴𝐴𝐴𝐴 and 𝑂𝑂𝑂𝑂 lie on the same side of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,

then ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐵𝐵∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; see Figure 2 (b).
Here, 𝖯𝖯𝖯𝖯 is a special case of 𝖰𝖰𝖰𝖰 in which
∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵0∘.

(5) Consider the following statements which
refer to a convex quadrilateral 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with
sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 , 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐶𝐶𝐶𝐶, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐷𝐷𝐷𝐷,
semi-perimeter 𝑠𝑠𝑠𝑠 = (𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     𝑠𝑠𝐵𝐵 and
area Δ.
(𝖯𝖯𝖯𝖯) If quadrilateral 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is cyclic, its area

Δ is given by

Δ� = (𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠
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(a): Circle with radius r (b): Ellipse with semi-axes a,b

Figure 1. A circle may be regarded as a particular case of an ellipse
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Generalization and Specialization

The Strange Case
of the Pythagorean
Theorem

Theword ‘generalize’ is extremely dear to mathematicians;
they are always looking for ways to generalize something
or the other! This should not come as a surprise, because

generalization is utterly basic to mathematics. (It is just as basic
to the notion of language, but we won’t go into that here.) In this
article we examine what ‘generalization’ means, along with its
complementary action, ‘specialization’. Using a few simple
examples, we show that even in very elementary contexts there
lurk strange paradoxes.

What does it mean to ‘generalize’?
Say we have a proposition 𝖰𝖰𝖰𝖰which contains some free variables
or parameters. When those parameters are given particular
values, or some constraints are placed on them, let the
proposition take on a new form 𝖯𝖯𝖯𝖯. Then, 𝖯𝖯𝖯𝖯 is said to be a
specialization of 𝖰𝖰𝖰𝖰, and 𝖰𝖰𝖰𝖰 is said to be a generalization of 𝖯𝖯𝖯𝖯.

Shailesh Shirali
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(1) Consider the following pair of propositions:
(𝖯𝖯𝖯𝖯) 10� − 1 = 9 × 11.
(𝖰𝖰𝖰𝖰) 𝑛𝑛𝑛𝑛�−1 = (𝑛𝑛𝑛𝑛−1𝑛𝑛(𝑛𝑛𝑛𝑛𝑛𝑛1𝑛𝑛 for all numbers𝑛𝑛𝑛𝑛.
𝖯𝖯𝖯𝖯 is clearly a particular case of 𝖰𝖰𝖰𝖰 in which 𝑛𝑛𝑛𝑛
has been given the value 10; so 𝖯𝖯𝖯𝖯 is a
specialization of 𝖰𝖰𝖰𝖰, while 𝖰𝖰𝖰𝖰 is a
generalization of 𝖯𝖯𝖯𝖯.

(2) Consider the following pair of propositions:
(𝖯𝖯𝖯𝖯) The area of a circle with radius 𝑟𝑟𝑟𝑟 is 𝜋𝜋𝜋𝜋𝑟𝑟𝑟𝑟�.
(𝖰𝖰𝖰𝖰) The area of an ellipse with semi-axes 𝑎𝑎𝑎𝑎

and 𝑏𝑏𝑏𝑏 is 𝜋𝜋𝜋𝜋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.
𝖯𝖯𝖯𝖯 is a particular case of 𝖰𝖰𝖰𝖰 in which the
semi-axes have equal length 𝑟𝑟𝑟𝑟 (this is so
because the circle is a special case of an
ellipse; see Figure 1); hence 𝖯𝖯𝖯𝖯 is a
specialization of 𝖰𝖰𝖰𝖰, while 𝖰𝖰𝖰𝖰 is a
generalization of 𝖯𝖯𝖯𝖯.

(3) Consider the following statements 𝖯𝖯𝖯𝖯 and 𝖰𝖰𝖰𝖰
which refer to an arbitrary positive integer 𝑛𝑛𝑛𝑛
and the remainder when 𝑛𝑛𝑛𝑛 is divided by 9.
The symbol 𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 denotes the sum of the
digits of 𝑛𝑛𝑛𝑛 when it is written in base ten.
(𝖯𝖯𝖯𝖯) 𝑛𝑛𝑛𝑛 is divisible by 9 if and only if 𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 is

divisible by 9.
(𝖰𝖰𝖰𝖰) The remainder when 𝑛𝑛𝑛𝑛 is divided by 9 is

the same as the remainder when 𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 is
divided by 9.

Statement 𝖯𝖯𝖯𝖯 is the familiar test for divisibility
by 9. Youmay not be familiar with statement

𝖰𝖰𝖰𝖰, but it is true and is proved in exactly the
same way that 𝖯𝖯𝖯𝖯 is proved. Here is an
illustration of 𝖰𝖰𝖰𝖰 in action: if 𝑛𝑛𝑛𝑛 = 1𝑛𝑛𝑛𝑛, then
𝑠𝑠𝑠𝑠(𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑠𝑠. Please check that 1𝑛𝑛𝑛𝑛 and 1𝑠𝑠
leave the same remainder (namely, 4) under
division by 9.
Here, 𝖯𝖯𝖯𝖯 is a special case of 𝖰𝖰𝖰𝖰, for it
corresponds to the case when the
remainder is 0. So 𝖯𝖯𝖯𝖯 is a specialization of 𝖰𝖰𝖰𝖰,
while 𝖰𝖰𝖰𝖰 is a generalization of 𝖯𝖯𝖯𝖯. (Loosely
speaking, “𝖰𝖰𝖰𝖰 contains 9 times as much
information as 𝖯𝖯𝖯𝖯”.)

(4) Consider the following pair of statements
which refer to a circle 𝜔𝜔𝜔𝜔 with centre 𝑂𝑂𝑂𝑂 and
distinct points 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 on 𝜔𝜔𝜔𝜔.
(𝖯𝖯𝖯𝖯) If 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a diameter of 𝜔𝜔𝜔𝜔, then ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a

right angle; see Figure 2 (a).
(𝖰𝖰𝖰𝖰) If 𝐴𝐴𝐴𝐴 and 𝑂𝑂𝑂𝑂 lie on the same side of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,

then ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐵𝐵∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; see Figure 2 (b).
Here, 𝖯𝖯𝖯𝖯 is a special case of 𝖰𝖰𝖰𝖰 in which
∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵0∘.

(5) Consider the following statements which
refer to a convex quadrilateral 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with
sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 , 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐶𝐶𝐶𝐶, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐷𝐷𝐷𝐷,
semi-perimeter 𝑠𝑠𝑠𝑠 = (𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     𝑠𝑠𝐵𝐵 and
area Δ.
(𝖯𝖯𝖯𝖯) If quadrilateral 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is cyclic, its area

Δ is given by

Δ� = (𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠
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(a): Circle with radius r (b): Ellipse with semi-axes a,b

Figure 1. A circle may be regarded as a particular case of an ellipse
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(a): General case (b): The case when A= 90◦

Figure 4. The theorem of Apollonius

Theorem 2 (Apollonius). In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, let 𝐷𝐷𝐷𝐷 be the
midpoint of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Then:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�� 𝑑𝑑

See Figure 4(a). In the special case when∠𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴∘
(see Figure 4 (b)), 𝐷𝐷𝐷𝐷 is the centre of the circle
through 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴, so 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. The statement now
reduces to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 4𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�. Since 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
this may be written as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�. So this
theorem too yields the PT as a special case.
With some ingenuity one can derive the
inequality form of the PT from the theorem of
Apollonius. (We urge you to try doing so.)
A symmetrical and more pleasing form of this
theorem is the following: The sum of the squares of
the four sides of a parallelogram is equal to the
sum of the squares of the diagonals. This is
equivalent to the theorem of Apollonius because
of the easily-proved result that the diagonals of a
parallelogram bisect one another.
Apollonius’s theoremmay itself be expressed in a
stronger form, and we have the following theorem
�irst found by a Scottish mathematician of the
eighteenth century, Mathew Stewart (see
Figure 5):
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Figure 5. Stewart's theorem

Theorem 3 (Stewart). In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, let 𝐷𝐷𝐷𝐷 be a point
on side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Let 𝑎𝑎𝑎𝑎𝐴𝐴 𝑎𝑎𝑎𝑎𝐴𝐴 𝑎𝑎𝑎𝑎 be the lengths of the sides of
the triangle, and let 𝑑𝑑𝑑𝑑𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴 𝑑𝑑𝑑𝑑 be the lengths of
𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. Then:

𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑 �𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑

If 𝐷𝐷𝐷𝐷 is the midpoint of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 then we have
𝑑𝑑𝑑𝑑 𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚2, hence the statement reduces to
�𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�𝑚𝑚𝑚𝑚, giving
𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� 𝐴𝐴 2𝑑𝑑𝑑𝑑� + 𝑎𝑎𝑎𝑎�𝑚𝑚2. This is equivalent to the
theorem of Apollonius. (Do you see why?) Hence
the theorem of Apollonius may be regarded as a
specialization of Stewart’s theorem. This implies
that the theorem of Pythagoras may be
considered a specialization of Stewart’s theorem.
Here is a way of proving Stewart’s theorem. Let
∠𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴; then ∠𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴∘ − 𝐴𝐴𝐴𝐴. Using the
cosine rule together with the identity
cos(𝐴𝐴𝐴𝐴𝐴𝐴∘ − 𝐴𝐴𝐴𝐴𝜃𝜃 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴, we have:

𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑� − 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 cos 𝐴𝐴𝐴𝐴𝐴𝐴
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑� + 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 cos 𝐴𝐴𝐴𝐴𝑑𝑑

If we multiply the �irst relation by𝑑𝑑𝑑𝑑 and the
second one by 𝑑𝑑𝑑𝑑 and then add them, the terms
containing cos 𝐴𝐴𝐴𝐴 are eliminated and we then get:
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�. Since
𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 , this may be written in a more
convenient way:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑� + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑
Those of you who are familiar with the math
Olympiads will know that Stewart’s theorem is
part of the staple diet for all mathletes.

And now… a paradox!
We did not present the proofs of the cosine rule and
the theorem of Apollonius, as most 11th standard
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(a): The case when A= 90◦ (b): The general case

Figure 2. Two circle theorems: (a) is a particular case of (b)

(𝖰𝖰𝖰𝖰) If 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a general quadrilateral, its
area Δ is given by

Δ� = (𝑠𝑠𝑠𝑠 𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎� �

�(𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴

Here, 𝖯𝖯𝖯𝖯 is a special case of 𝖰𝖰𝖰𝖰; for, if the
quadrilateral is cyclic, then 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴∘, so
the cosine term in 𝖰𝖰𝖰𝖰 vanishes (because
𝑎𝑎𝑎𝑎𝑎𝑎 9𝐴𝐴∘ = 𝐴𝐴) and we get formula 𝖯𝖯𝖯𝖯.
Some of you may know that 𝖯𝖯𝖯𝖯was �irst found
by Brahmagupta.
Note that 𝖰𝖰𝖰𝖰 implies much more than 𝖯𝖯𝖯𝖯. Here
is a lovely corollary of 𝖰𝖰𝖰𝖰which derives from
the fact that the cosine term comes in
squared form and so is never negative: If the
sides 𝑠𝑠𝑠𝑠𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎 𝑠𝑠𝑠𝑠 of a quadrilateral are �ixed,
then its area is largest when the
quadrilateral is cyclic.

Three Apparent Generalizations Of The
Pythagorean Theorem
The title of this section is “Three Apparent
Generalizations Of The PT” (we use the short-form
‘PT’ for ‘Pythagorean Theorem’). We should add
the following as a subtitle: “Or Are They ‘Mere’
Corollaries?”We present three propositions which
can be thought of as generalizations of the PT, but
which have an odd, paradoxical feature associated
with them. The �irst one is the cosine rule.
Theorem 1 (Cosine rule). In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we have the
following relationship:

𝑠𝑠𝑠𝑠� = 𝑠𝑠𝑠𝑠� 𝐴𝐴 𝐴𝐴𝐴𝐴� 𝑠𝑠 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

The cosine rule clearly contains the PT as a
special case: if ∠𝐴𝐴𝐴𝐴 = 9𝐴𝐴∘ then 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴 = 𝐴𝐴, therefore
𝑠𝑠𝑠𝑠� = 𝑠𝑠𝑠𝑠� 𝐴𝐴 𝐴𝐴𝐴𝐴�.
It also implies the converse of the PT; for, the
cosine of an angle of a triangle is 𝐴𝐴 precisely when
the angle is a right angle. Hence if it happens that
𝑠𝑠𝑠𝑠� = 𝑠𝑠𝑠𝑠� 𝐴𝐴 𝐴𝐴𝐴𝐴�, then it must be that 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴 = 𝐴𝐴 (since
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is not zero), and therefore that ∠𝐴𝐴𝐴𝐴 = 9𝐴𝐴∘.
Indeed, the cosine rule yields still more: it also
implies the inequality form of the PT, drawing on
the fact that the cosine of an angle is positive if the
angle is acute, and negative if the angle is obtuse.
Therefore, if ∠𝐴𝐴𝐴𝐴 𝐴𝐴 9𝐴𝐴∘ then 𝑠𝑠𝑠𝑠� 𝐴𝐴 𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴𝐴𝐴𝐴�, and if
∠𝐴𝐴𝐴𝐴 𝐴𝐴 9𝐴𝐴∘ then 𝑠𝑠𝑠𝑠� 𝐴𝐴 𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴𝐴𝐴𝐴�. So there is a lot of
information contained in that simple rule.
So surely the cosine rule can be regarded as a
genuine generalization of the PT?
Next we study the theorem of Apollonius. This is
named after the third century �� Greek geometer
Apollonius (often described as “the greatest
geometer of antiquity”, and known for his work on
the conic sections), and it states the following:

A
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Figure 3. The cosine rule
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(a): General case (b): The case when A= 90◦

Figure 4. The theorem of Apollonius

Theorem 2 (Apollonius). In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, let 𝐷𝐷𝐷𝐷 be the
midpoint of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Then:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�� 𝑑𝑑

See Figure 4(a). In the special case when∠𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴∘
(see Figure 4 (b)), 𝐷𝐷𝐷𝐷 is the centre of the circle
through 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴, so 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. The statement now
reduces to: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 4𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�. Since 2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
this may be written as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�. So this
theorem too yields the PT as a special case.
With some ingenuity one can derive the
inequality form of the PT from the theorem of
Apollonius. (We urge you to try doing so.)
A symmetrical and more pleasing form of this
theorem is the following: The sum of the squares of
the four sides of a parallelogram is equal to the
sum of the squares of the diagonals. This is
equivalent to the theorem of Apollonius because
of the easily-proved result that the diagonals of a
parallelogram bisect one another.
Apollonius’s theoremmay itself be expressed in a
stronger form, and we have the following theorem
�irst found by a Scottish mathematician of the
eighteenth century, Mathew Stewart (see
Figure 5):
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Figure 5. Stewart's theorem

Theorem 3 (Stewart). In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, let 𝐷𝐷𝐷𝐷 be a point
on side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Let 𝑎𝑎𝑎𝑎𝐴𝐴 𝑎𝑎𝑎𝑎𝐴𝐴 𝑎𝑎𝑎𝑎 be the lengths of the sides of
the triangle, and let 𝑑𝑑𝑑𝑑𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴 𝑑𝑑𝑑𝑑 be the lengths of
𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. Then:

𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑 �𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑

If 𝐷𝐷𝐷𝐷 is the midpoint of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 then we have
𝑑𝑑𝑑𝑑 𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚2, hence the statement reduces to
�𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�𝑚𝑚𝑚𝑚, giving
𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎� 𝐴𝐴 2𝑑𝑑𝑑𝑑� + 𝑎𝑎𝑎𝑎�𝑚𝑚2. This is equivalent to the
theorem of Apollonius. (Do you see why?) Hence
the theorem of Apollonius may be regarded as a
specialization of Stewart’s theorem. This implies
that the theorem of Pythagoras may be
considered a specialization of Stewart’s theorem.
Here is a way of proving Stewart’s theorem. Let
∠𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴; then ∠𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴∘ − 𝐴𝐴𝐴𝐴. Using the
cosine rule together with the identity
cos(𝐴𝐴𝐴𝐴𝐴𝐴∘ − 𝐴𝐴𝐴𝐴𝜃𝜃 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴, we have:

𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑� − 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 cos 𝐴𝐴𝐴𝐴𝐴𝐴
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑� + 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 cos 𝐴𝐴𝐴𝐴𝑑𝑑

If we multiply the �irst relation by𝑑𝑑𝑑𝑑 and the
second one by 𝑑𝑑𝑑𝑑 and then add them, the terms
containing cos 𝐴𝐴𝐴𝐴 are eliminated and we then get:
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�. Since
𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 , this may be written in a more
convenient way:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑� + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑
Those of you who are familiar with the math
Olympiads will know that Stewart’s theorem is
part of the staple diet for all mathletes.

And now… a paradox!
We did not present the proofs of the cosine rule and
the theorem of Apollonius, as most 11th standard
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Angle
Bisectors in a
Quadrilateral

Thebisectors of the interior angles of a quadrilateral are
either all concurrent or meet pairwise at 4, 5 or 6 points,
in any case forming a cyclic quadrilateral. The situation of

exactly three bisectors being concurrent is not possible. See
Figure 1 for a possible situation. The reader is invited to prove
these as well as observations regarding some of the special cases
mentioned below.
Start with the last observation. Assume that three angle
bisectors in a quadrilateral are concurrent. Join the point of

B C

D

A

E

F G

H

Figure 1. A typical configuration, showing how a cyclic quadrilateral
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is formed

Keywords: Quadrilateral, diagonal, angular bisector, tangential
quadrilateral, kite, rhombus, square, isosceles trapezium, non-isosceles
trapezium, cyclic, incircle
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mathematics textbooks give these proofs. But if we
study these proofs, and the one given above for
Stewart�s theorem, we �ind a paradoxical situation.
Namely, these proofs are based on the Pythagorean
theorem! A good exercise for you would be to study
these proofs and �ind the exact point(s) where the
PT has been used. It may well come in a disguised
form! For example, youmay opt for a vector proof of
the cosine rule as follows: Let 𝐮𝐮𝐮𝐮𝐮𝐮 𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 denote the
vectors ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐮𝐮 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐮𝐮 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively (see Figure 3).
Then𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮, and by squaring we get:

𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐰𝐰𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮𝐰𝐰

But𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐰𝐰𝐰𝐰�, 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮�, 𝐮𝐮𝐮𝐮 𝐮𝐮 𝐮𝐮𝐮𝐮 𝐮𝐮 𝐯𝐯𝐯𝐯� and
𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮 𝐰𝐰 𝐮𝐮𝐮𝐮𝐯𝐯𝐯𝐯 𝐮𝐮𝐮𝐮𝐮𝐮 𝐴𝐴𝐴𝐴. Hence

𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰  𝐰𝐰

Similarly, for the theorem of Apollonius (Figure
4), let 𝐮𝐮𝐮𝐮 and 𝐮𝐮𝐮𝐮 denote the vectors �������𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 and �������𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴
respectively; then �������𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 , so ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐰𝐰 𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰𝐰𝐰𝐰,
������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰𝐰𝐰𝐰. Now we obtain expressions for
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷�, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� and con�irm that the stated
claim is true.
But where has the PT been used in these two
derivations? We leave this puzzle for you to crack.
So we have here a situation where a theorem
appears to lead to its own generalization; how
apparently paradoxical! What are we to make of
it? In such a case, should we not regard the
generalization as “only a corollary” and not a
generalization at all?
Or should we say that the cosine rule can be
regarded as a generalization of the PT only if we can
�ind a proof for the rule that is not based on the PT?

We leave you to ponder the matter.

Exercises
(1) Show how the theorem of Apollonius

implies the inequality form of the PT.

(2) If a pair of propositions 𝖯𝖯𝖯𝖯 and 𝖰𝖰𝖰𝖰 have the
property that 𝖯𝖯𝖯𝖯 𝖯𝖯 𝖰𝖰𝖰𝖰 and also 𝖰𝖰𝖰𝖰 𝖯𝖯 𝖯𝖯𝖯𝖯,
what word is appropriate to describe the
relationship between 𝖯𝖯𝖯𝖯 and 𝖰𝖰𝖰𝖰?

(3) Find some nice specializations of the cosine
rule. (See what you get if you put 𝜃𝜃𝜃𝜃 𝐰𝐰 𝜃𝜃𝜃𝜃∘ or
1𝐰𝐰𝐰𝐰∘.)

(4) Consider the following pair of propositions:
(𝖯𝖯𝖯𝖯) (1 𝐰𝐰 𝑥𝑥𝑥𝑥𝑥𝑥� 𝐰𝐰 1 𝐰𝐰 𝐰𝐰𝑥𝑥𝑥𝑥 𝐰𝐰 𝑥𝑥𝑥𝑥�.
(𝖰𝖰𝖰𝖰) (𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰𝐰𝐰𝐰�.
We certainly get the impression that 𝖯𝖯𝖯𝖯 is a
specialization of 𝖰𝖰𝖰𝖰; for, by putting 𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰,
𝐮𝐮𝐮𝐮 𝐮𝐮𝐮𝐮𝐮𝐮  in 𝖰𝖰𝖰𝖰, we get 𝖯𝖯𝖯𝖯. So it would seem that 𝖰𝖰𝖰𝖰
is a generalization of 𝖯𝖯𝖯𝖯. But is this so?
Consider what happens in 𝖯𝖯𝖯𝖯 if we put
𝑥𝑥𝑥𝑥 𝐰𝐰 𝐰𝐰𝐰𝐰𝑥𝑥𝐰𝐰𝐰𝐰 in 𝖯𝖯𝖯𝖯. We get:

�1 𝐰𝐰 𝐮𝐮𝐮𝐮
𝐰𝐰𝐰𝐰�

�
𝐰𝐰 1 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰

𝐰𝐰𝐰𝐰 𝐰𝐰 𝐮𝐮𝐮𝐮�
𝐰𝐰𝐰𝐰� 𝐮𝐮

∴ (𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰� 𝐰𝐰 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐰𝐰 𝐰𝐰𝐰𝐰�𝐰𝐰

So we have 𝖯𝖯𝖯𝖯 𝖯𝖯 𝖰𝖰𝖰𝖰 as well as 𝖰𝖰𝖰𝖰 𝖯𝖯 𝖯𝖯𝖯𝖯. In
the light of this, would you still say that 𝖰𝖰𝖰𝖰 is
a generalization of 𝖯𝖯𝖯𝖯?
See [1] for more such examples. Chapter 2 in
[2] has an illuminating discussion on the
process of generalization.
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