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And other
memorable
triples – Part II

InPart I of this article we had showcased the triple (3, 4, 5) by
highlighting some of its properties and some con�igurations
where it occurred naturally. We now attempt to extend this

to other triples of consecutive integers. To begin with, we study
the two ‘siblings’ of (3, 4, 5), namely, the triples (2, 3, 4) and
(4, 5, 6). We start �irst with the elder sibling, (4, 5, 6). (We do
need to show the older ones some respect, don’t we?)

The triple 4, 5, 6
In Figure 1 we see a sketch of a triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with sides 4, 5, 6
(with 𝑎𝑎𝑎𝑎 𝑎𝑎 6, 𝑏𝑏𝑏𝑏 𝑎𝑎 5, 𝑐𝑐𝑐𝑐 𝑎𝑎 4). Is there anything special about the
triangle? Let’s do some exploration using GeoGebra.
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Figure 1.
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messy. The other, which is more interesting as
well as more ef�icient, and which we prefer, is to
use a geometric Pythagoras-style theorem which
is striking by itself.
Theorem 2. Let △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 have sides 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎. Then the
relation ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴 is true if and only if
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏.
Proof of Theorem 2: Forward implication. We
�irst tackle the statement: if ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏. (This is the ‘only if ’ part of the
theorem.) We offer a trigonometric proof of the
result. Let ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵𝐵𝐵; then ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐵𝐵𝐵𝐵 and
∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘ − 3𝐵𝐵𝐵𝐵. Hence we have sin𝐴𝐴𝐴𝐴 𝐴𝐴 sin 𝐴𝐴𝐵𝐵𝐵𝐵
and sin𝐴𝐴𝐴𝐴 𝐴𝐴 sin3𝐵𝐵𝐵𝐵. The sine rule yields:

𝑎𝑎𝑎𝑎
sin 𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎

sin𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎
sin3𝐵𝐵𝐵𝐵 .

From the �irst equality we get:

𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 sin 𝐴𝐴𝐵𝐵𝐵𝐵sin𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 cos𝐵𝐵𝐵𝐵𝑎𝑎 𝜃𝜃 cos𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎
𝐴𝐴𝑎𝑎𝑎𝑎 .

The second equality yields:

𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 sin3𝐵𝐵𝐵𝐵sin𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 3 sin𝐵𝐵𝐵𝐵 − 𝜃𝜃 sin� 𝐵𝐵𝐵𝐵
sin𝐵𝐵𝐵𝐵

𝐴𝐴 𝑎𝑎𝑎𝑎 𝐴3 − 𝜃𝜃 sin� 𝐵𝐵𝐵𝐵𝐵
𝐴𝐴 𝑎𝑎𝑎𝑎 𝑏𝑏𝜃𝜃 cos� 𝐵𝐵𝐵𝐵 − 𝐶𝐶𝑏𝑏 .

Substituting for cos𝐵𝐵𝐵𝐵 in this relation, we get:

𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎
�

𝑎𝑎𝑎𝑎� − 𝐶𝐶𝐶 𝐴𝐴 𝑎𝑎𝑎𝑎� − 𝑎𝑎𝑎𝑎�
𝑎𝑎𝑎𝑎 𝑎𝑎

𝜃𝜃 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎� 𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎

as claimed.
Proof of Theorem 2: Reverse implication. Now
we tackle the ‘if ’ part of the theorem, namely: if
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏, then ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴. Once again, we
offer a trigonometric proof of the result. We use
the sine rule together with the following beautiful
identity whose proof we leave as an exercise:

sin� 𝐴𝐴𝐴𝐴 − sin� 𝐴𝐴𝐴𝐴 𝐴𝐴 sin𝑏𝑏𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴𝑏𝑏 sin𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏.

The sine rule tells us that for any triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we
have 𝑎𝑎𝑎𝑎𝑎𝑎 sin𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 sin𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 sin𝐴𝐴𝐴𝐴 𝐴𝐴 some
constant 𝑘𝑘𝑘𝑘. (In fact, 𝑘𝑘𝑘𝑘 is the circum-diameter of
the triangle, i.e., it is twice the radius of the
circumcircle. But we do not need this information
right now.)

From the relation 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏we get
𝑎𝑎𝑎𝑎� − 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, which tells us that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 and
therefore that ∡𝐴𝐴𝐴𝐴 𝑎𝑎 ∡𝐴𝐴𝐴𝐴. The same relation also
yields, by the sine rule:

sin� 𝐴𝐴𝐴𝐴 − sin� 𝐴𝐴𝐴𝐴 𝐴𝐴 sin𝐴𝐴𝐴𝐴 sin𝐴𝐴𝐴𝐴.
Using the trigonometric identity quoted above, we
get:

sin𝑏𝑏𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴𝑏𝑏 sin𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏 𝐴𝐴 sin𝐴𝐴𝐴𝐴 sin𝐴𝐴𝐴𝐴.
Since 𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘, we have
sin𝑏𝑏𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴𝑏𝑏 𝐴𝐴 sin𝐴𝐴𝐴𝐴. Since sin𝐴𝐴𝐴𝐴 𝐶𝐶 𝐶𝐶, we get:

sin𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏 𝐴𝐴 sin𝐴𝐴𝐴𝐴.
Since 𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 lie between 𝐶𝐶∘ and 𝐶𝐶𝐶𝐶𝐶𝐶∘ and
have equal sine, they are either equal angles or
they are supplementary angles. The latter
possibility leads to 𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏 𝑏𝑏 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘, i.e.,
𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘, which is absurd. Hence this case does
not hold. It follows that 𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴, i.e., ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴.
There is also an elegant geometric proof of the
result (both parts: forward implication as well as
reverse implication), which we shall discuss later.
Proof of Theorem 1. We now use Theorem 2 to
prove Theorem 1. We consider the three
possibilities in turn.
Case (i): If ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏, hence:

𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐴𝐴𝑏𝑏� 𝐴𝐴 𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏𝑏𝑏𝐴𝐴𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏𝑎𝑎
𝜃𝜃 𝑛𝑛𝑛𝑛� 𝑏𝑏 𝜃𝜃𝑛𝑛𝑛𝑛 𝑏𝑏 𝜃𝜃 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛� 𝑏𝑏 3𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑎𝑎
𝜃𝜃 𝑛𝑛𝑛𝑛� − 𝑛𝑛𝑛𝑛 − 3 𝐴𝐴 𝐶𝐶.

This equation has roots 𝑛𝑛𝑛𝑛 𝐴𝐴 �
�𝑏𝑏𝐶𝐶 ± √𝐶𝐶3𝑏𝑏.

These are not positive integers (or even
rational numbers), so we do not get any
solution from this possibility.

Case (ii): If∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏, hence:
𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏� 𝐴𝐴 𝑛𝑛𝑛𝑛𝑏𝑏𝐴𝐴𝑛𝑛𝑛𝑛 𝑏𝑏 𝐴𝐴𝑏𝑏𝑎𝑎

𝜃𝜃 𝑏𝑏𝑛𝑛𝑛𝑛 − 𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏 𝐴𝐴 𝐶𝐶.
This yields 𝑛𝑛𝑛𝑛 𝐴𝐴 ±𝐶𝐶. Only the positive sign is
of interest to us. However, the triangle
corresponding to 𝑛𝑛𝑛𝑛 𝐴𝐴 𝐶𝐶 has sides 𝐶𝐶𝑎𝑎 𝐴𝐴𝑎𝑎 3 and
so is degenerate: it is ‘�lat’, with angles 𝐶𝐶𝐶𝐶𝐶𝐶∘,
𝐶𝐶∘ and 𝐶𝐶∘. Note that the solution is not
‘wrong’. For, this triangle has ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶∘ 𝐴𝐴 ∡𝐴𝐴𝐴𝐴,
which means that we do have the relation
∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴! But it is of no interest to us, so
we move on.
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Figure 1 shows a GeoGebra sketch of the triangle.
We start by measuring the angles of the triangle
(using the tool available in GeoGebra). Here is the
output:

∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∘, ∡𝐵𝐵𝐵𝐵 𝐴𝐴 𝐵𝐵𝐵𝐵𝐴𝐴𝐵𝐵𝐵𝐵∘, ∡𝐶𝐶𝐶𝐶 𝐴𝐴 𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶∘𝐴𝐴

Examining the data, we quickly notice that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
is twice 𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶, in other words: ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐶𝐶𝐶𝐶. Right
away we have uncovered something notable and
of interest!
But wait: this relation has been numerically
determined. Could it be the case that if we compute
both angle measures to more decimal places than
shown above, the above relation will turn out to
be only approximate and not exact? How can we
check whether or not ∡𝐴𝐴𝐴𝐴 is exactly twice ∡𝐶𝐶𝐶𝐶?
We can do so using trigonometry. Let us compute
the cosines of all three angles of the triangle using
the cosine rule:

cos𝐴𝐴𝐴𝐴 𝐴𝐴 𝑏𝑏𝑏𝑏� + 𝑐𝑐𝑐𝑐� − 𝑎𝑎𝑎𝑎�
𝐴𝐴𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 𝐴𝐴 𝐴𝐴𝐵𝐵 + 𝐶𝐶6 − 36

𝐴𝐴 × 𝐴𝐴0 𝐴𝐴 𝐶𝐶
𝐴𝐴,

cos𝐵𝐵𝐵𝐵 𝐴𝐴 𝑐𝑐𝑐𝑐� + 𝑎𝑎𝑎𝑎� − 𝑏𝑏𝑏𝑏�
𝐴𝐴𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 𝐴𝐴 𝐶𝐶6 + 36 − 𝐴𝐴𝐵𝐵

𝐴𝐴 × 𝐴𝐴𝐶𝐶 𝐴𝐴 9
𝐶𝐶6,

cos𝐶𝐶𝐶𝐶 𝐴𝐴 𝑎𝑎𝑎𝑎� + 𝑏𝑏𝑏𝑏� − 𝑐𝑐𝑐𝑐�
𝐴𝐴𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝐴𝐴 36 + 𝐴𝐴𝐵𝐵 − 𝐶𝐶6

𝐴𝐴 × 30 𝐴𝐴 3
𝐶𝐶𝐴𝐴

To see if ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐶𝐶𝐶𝐶 as suggested by the empirical
evidence, we must check whether
cos𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴 cos� 𝐶𝐶𝐶𝐶 − 𝐶𝐶 (for we have the identity
cos 𝐴𝐴𝜃𝜃𝜃𝜃 𝐴𝐴 𝐴𝐴 cos� 𝜃𝜃𝜃𝜃 − 𝐶𝐶which is true for any angle
𝜃𝜃𝜃𝜃). We have:

𝐴𝐴 cos� 𝐶𝐶𝐶𝐶 − 𝐶𝐶 𝐴𝐴 𝐴𝐴𝐶3𝐶𝐶�
�
− 𝐶𝐶 𝐴𝐴 9

𝐴𝐴 − 𝐶𝐶 𝐴𝐴 𝐶𝐶
𝐴𝐴 𝐴𝐴 cos𝐴𝐴𝐴𝐴,

and since both ∡𝐴𝐴𝐴𝐴 and ∡𝐶𝐶𝐶𝐶 are acute angles, the
veri�ication is complete. So the relation ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐶𝐶𝐶𝐶
is indeed exact.

The same property can be proved by a
geometric argument which may be preferred
by some. In Figure 2 (a) we have redrawn the
4-5-6 triangle with the perpendicular 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 from
vertex 𝐵𝐵𝐵𝐵 to side 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶. Our �irst task is to �ind the
length 𝑥𝑥𝑥𝑥 of 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵. We shall make use of the
Pythagorean theorem to do so. Let ℎ be the
length of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. Then we have:

ℎ� + 𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐶𝐶�,
ℎ� + (𝐵𝐵 − 𝑥𝑥𝑥𝑥𝑥𝑥� 𝐴𝐴 6�,

hence by subtraction: (𝐵𝐵 − 𝑥𝑥𝑥𝑥𝑥𝑥� − 𝑥𝑥𝑥𝑥� 𝐴𝐴 6� − 𝐶𝐶�, i.e.,
𝐴𝐴𝐵𝐵 − 𝐶𝐶0𝑥𝑥𝑥𝑥 𝐴𝐴 𝐴𝐴0. This yields 𝑥𝑥𝑥𝑥 𝐴𝐴 𝐶𝐶𝑥𝑥𝐴𝐴.
Let 𝐸𝐸𝐸𝐸 be the point on side 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 such that 𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 𝐴𝐴 𝐶𝐶
unit; see Figure 2 (b). Join 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸. Since 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 𝐴𝐴 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴, it
follows that 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 𝐴𝐴 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴. Also 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 𝐴𝐴 𝐵𝐵 − 𝐶𝐶 𝐴𝐴 𝐶𝐶 units.
So we have 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 𝐴𝐴 𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶. Hence
∡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, and also ∡𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 𝐴𝐴 ∡𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸. It
follows that ∡𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 𝐴𝐴 𝐴𝐴∡𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴, i.e., ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐶𝐶𝐶𝐶.

A Stronger Property
We now prove something much more striking:
Theorem 1. There is only one triple of consecutive
integers with the property that the triangle with
these numbers as its side lengths has one angle
which is twice another one. This is the triple
(𝐶𝐶, 𝐵𝐵, 6𝑥𝑥.
Let the sides of the triangle be 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝐶𝐶, 𝑛𝑛𝑛𝑛 + 𝐴𝐴. Let
the triangle be labelled 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 so that 𝑎𝑎𝑎𝑎 𝐴𝐴 𝑛𝑛𝑛𝑛 + 𝐴𝐴,
𝑏𝑏𝑏𝑏 𝐴𝐴 𝑛𝑛𝑛𝑛 + 𝐶𝐶, 𝑐𝑐𝑐𝑐 𝐴𝐴 𝑛𝑛𝑛𝑛. Since 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑏𝑏𝑏𝑏 𝑎𝑎 𝑐𝑐𝑐𝑐, we have
∡𝐴𝐴𝐴𝐴 𝑎𝑎 ∡𝐵𝐵𝐵𝐵 𝑎𝑎 ∡𝐶𝐶𝐶𝐶. So if one angle of the triangle is
twice another, one of the following must be true:
(i) ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐵𝐵𝐵𝐵 (ii) ∡𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴∡𝐶𝐶𝐶𝐶 (iii) ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐶𝐶𝐶𝐶.
There are now two ways of proceeding. One is to
use the cosine rule. This works, but the algebra is
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messy. The other, which is more interesting as
well as more ef�icient, and which we prefer, is to
use a geometric Pythagoras-style theorem which
is striking by itself.
Theorem 2. Let △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 have sides 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎. Then the
relation ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴 is true if and only if
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏.
Proof of Theorem 2: Forward implication. We
�irst tackle the statement: if ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏. (This is the ‘only if ’ part of the
theorem.) We offer a trigonometric proof of the
result. Let ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵𝐵𝐵; then ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐵𝐵𝐵𝐵 and
∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘ − 3𝐵𝐵𝐵𝐵. Hence we have sin𝐴𝐴𝐴𝐴 𝐴𝐴 sin 𝐴𝐴𝐵𝐵𝐵𝐵
and sin𝐴𝐴𝐴𝐴 𝐴𝐴 sin3𝐵𝐵𝐵𝐵. The sine rule yields:

𝑎𝑎𝑎𝑎
sin 𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎

sin𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎
sin3𝐵𝐵𝐵𝐵 .

From the �irst equality we get:

𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 sin 𝐴𝐴𝐵𝐵𝐵𝐵sin𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎 cos𝐵𝐵𝐵𝐵𝑎𝑎 𝜃𝜃 cos𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎
𝐴𝐴𝑎𝑎𝑎𝑎 .

The second equality yields:

𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 sin3𝐵𝐵𝐵𝐵sin𝐵𝐵𝐵𝐵 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 3 sin𝐵𝐵𝐵𝐵 − 𝜃𝜃 sin� 𝐵𝐵𝐵𝐵
sin𝐵𝐵𝐵𝐵

𝐴𝐴 𝑎𝑎𝑎𝑎 𝐴3 − 𝜃𝜃 sin� 𝐵𝐵𝐵𝐵𝐵
𝐴𝐴 𝑎𝑎𝑎𝑎 𝑏𝑏𝜃𝜃 cos� 𝐵𝐵𝐵𝐵 − 𝐶𝐶𝑏𝑏 .

Substituting for cos𝐵𝐵𝐵𝐵 in this relation, we get:

𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎
�

𝑎𝑎𝑎𝑎� − 𝐶𝐶𝐶 𝐴𝐴 𝑎𝑎𝑎𝑎� − 𝑎𝑎𝑎𝑎�
𝑎𝑎𝑎𝑎 𝑎𝑎

𝜃𝜃 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎� 𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎

as claimed.
Proof of Theorem 2: Reverse implication. Now
we tackle the ‘if ’ part of the theorem, namely: if
𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏, then ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴. Once again, we
offer a trigonometric proof of the result. We use
the sine rule together with the following beautiful
identity whose proof we leave as an exercise:

sin� 𝐴𝐴𝐴𝐴 − sin� 𝐴𝐴𝐴𝐴 𝐴𝐴 sin𝑏𝑏𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴𝑏𝑏 sin𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏.

The sine rule tells us that for any triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we
have 𝑎𝑎𝑎𝑎𝑎𝑎 sin𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 sin𝐴𝐴𝐴𝐴 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 sin𝐴𝐴𝐴𝐴 𝐴𝐴 some
constant 𝑘𝑘𝑘𝑘. (In fact, 𝑘𝑘𝑘𝑘 is the circum-diameter of
the triangle, i.e., it is twice the radius of the
circumcircle. But we do not need this information
right now.)

From the relation 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏we get
𝑎𝑎𝑎𝑎� − 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, which tells us that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 and
therefore that ∡𝐴𝐴𝐴𝐴 𝑎𝑎 ∡𝐴𝐴𝐴𝐴. The same relation also
yields, by the sine rule:

sin� 𝐴𝐴𝐴𝐴 − sin� 𝐴𝐴𝐴𝐴 𝐴𝐴 sin𝐴𝐴𝐴𝐴 sin𝐴𝐴𝐴𝐴.
Using the trigonometric identity quoted above, we
get:

sin𝑏𝑏𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴𝑏𝑏 sin𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏 𝐴𝐴 sin𝐴𝐴𝐴𝐴 sin𝐴𝐴𝐴𝐴.
Since 𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘, we have
sin𝑏𝑏𝐴𝐴𝐴𝐴 𝑏𝑏 𝐴𝐴𝐴𝐴𝑏𝑏 𝐴𝐴 sin𝐴𝐴𝐴𝐴. Since sin𝐴𝐴𝐴𝐴 𝐶𝐶 𝐶𝐶, we get:

sin𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏 𝐴𝐴 sin𝐴𝐴𝐴𝐴.
Since 𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 lie between 𝐶𝐶∘ and 𝐶𝐶𝐶𝐶𝐶𝐶∘ and
have equal sine, they are either equal angles or
they are supplementary angles. The latter
possibility leads to 𝑏𝑏𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑏𝑏 𝑏𝑏 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘, i.e.,
𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶∘, which is absurd. Hence this case does
not hold. It follows that 𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴, i.e., ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴.
There is also an elegant geometric proof of the
result (both parts: forward implication as well as
reverse implication), which we shall discuss later.
Proof of Theorem 1. We now use Theorem 2 to
prove Theorem 1. We consider the three
possibilities in turn.
Case (i): If ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏 𝑎𝑎𝑎𝑎𝑏𝑏, hence:

𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐴𝐴𝑏𝑏� 𝐴𝐴 𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏𝑏𝑏𝐴𝐴𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏𝑎𝑎
𝜃𝜃 𝑛𝑛𝑛𝑛� 𝑏𝑏 𝜃𝜃𝑛𝑛𝑛𝑛 𝑏𝑏 𝜃𝜃 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛� 𝑏𝑏 3𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑎𝑎
𝜃𝜃 𝑛𝑛𝑛𝑛� − 𝑛𝑛𝑛𝑛 − 3 𝐴𝐴 𝐶𝐶.

This equation has roots 𝑛𝑛𝑛𝑛 𝐴𝐴 �
�𝑏𝑏𝐶𝐶 ± √𝐶𝐶3𝑏𝑏.

These are not positive integers (or even
rational numbers), so we do not get any
solution from this possibility.

Case (ii): If∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏, hence:
𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏� 𝐴𝐴 𝑛𝑛𝑛𝑛𝑏𝑏𝐴𝐴𝑛𝑛𝑛𝑛 𝑏𝑏 𝐴𝐴𝑏𝑏𝑎𝑎

𝜃𝜃 𝑏𝑏𝑛𝑛𝑛𝑛 − 𝐶𝐶𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏 𝐶𝐶𝑏𝑏 𝐴𝐴 𝐶𝐶.
This yields 𝑛𝑛𝑛𝑛 𝐴𝐴 ±𝐶𝐶. Only the positive sign is
of interest to us. However, the triangle
corresponding to 𝑛𝑛𝑛𝑛 𝐴𝐴 𝐶𝐶 has sides 𝐶𝐶𝑎𝑎 𝐴𝐴𝑎𝑎 3 and
so is degenerate: it is ‘�lat’, with angles 𝐶𝐶𝐶𝐶𝐶𝐶∘,
𝐶𝐶∘ and 𝐶𝐶∘. Note that the solution is not
‘wrong’. For, this triangle has ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐶𝐶∘ 𝐴𝐴 ∡𝐴𝐴𝐴𝐴,
which means that we do have the relation
∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴! But it is of no interest to us, so
we move on.
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Case (iii): If ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐,
hence:

𝑐𝑐𝑛𝑛𝑛𝑛 𝑐𝑐 𝐴𝐴𝑐𝑐� 𝐴𝐴 𝑛𝑛𝑛𝑛𝑐𝑐𝐴𝐴𝑛𝑛𝑛𝑛 𝑐𝑐 𝑛𝑛𝑐𝑐𝑛𝑛
∴ 𝑛𝑛𝑛𝑛� 𝑐𝑐 4𝑛𝑛𝑛𝑛 𝑐𝑐 4 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛� 𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛
∴ 𝑛𝑛𝑛𝑛� − 3𝑛𝑛𝑛𝑛 − 4 𝐴𝐴 𝑛𝑛𝑛𝑛

∴ 𝑐𝑐𝑛𝑛𝑛𝑛 𝑐𝑐 𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 − 4𝑐𝑐 𝐴𝐴 𝑛𝑛𝑛𝑛

The last equation has roots 𝑛𝑛𝑛𝑛 𝐴𝐴 −𝑛𝑛 and
𝑛𝑛𝑛𝑛 𝐴𝐴 4. We �inally do get a positive integral
root, 𝑛𝑛𝑛𝑛 𝐴𝐴 4, and this yields a genuine,
well-behaved triangle: a triangle with sides
4𝑛𝑛 5𝑛𝑛 6. This yields a solution to the stated
problem.

It follows that there is precisely one triangle with
the stated property: the one that has sides 4𝑛𝑛 5𝑛𝑛 6.
In closing we may say that the triple 𝑐𝑐4𝑛𝑛 5𝑛𝑛 6𝑐𝑐 can
lay its own claim to fame, with its own pleasing
property, just like its better known sibling
𝑐𝑐3𝑛𝑛 4𝑛𝑛 5𝑐𝑐.

A Geometric Proof of Theorem 2
Some readers may prefer to see a geometric proof
of Theorem 2 (we had earlier given a proof using
trigonometry). We offer one such proof here.
First we deal with the forward implication:
if ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴, then 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 . The relevant
con�iguration is shown in Figure 3.
We need an auxiliary construction. Draw a circle
tangent to side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐴𝐴𝐴𝐴 and passing through

vertex 𝐴𝐴𝐴𝐴. (The circle may be constructed as
follows: draw a perpendicular to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 through 𝐴𝐴𝐴𝐴,
and draw the perpendicular bisector of side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴;
the point where these two lines meet is then the
centre of the desired circle. These auxiliary
construction lines have not been shown in
Figure 3, to avoid a visual clutter.)
Extend side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 beyond vertex 𝐴𝐴𝐴𝐴 to meet the circle
again at point 𝐷𝐷𝐷𝐷. Draw segments 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 and 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷, as
shown. Let 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 have length 𝑑𝑑𝑑𝑑. Let ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴; then
∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 as per the given data.
From the fact that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is tangent to the circle at 𝐴𝐴𝐴𝐴,
two deductions follow: (i) ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ∡𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴, i.e.,
∡𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴; this follows from the “angle in the
alternate segment” theorem; (ii) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷,
i.e., 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑑𝑑𝑑𝑑𝑐𝑐; this is true because 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 is a
secant.
Since ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ∡𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝑐𝑐 ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷, it follows that
∡𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴. Hence △𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 is isosceles, with 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. So 𝑑𝑑𝑑𝑑 𝐴𝐴 𝑐𝑐𝑐𝑐. Combining this with deduction (ii),
above, we see that 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐, as claimed.
Now for the reverse implication:
if 𝑎𝑎𝑎𝑎� 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐, then ∡𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴∡𝐴𝐴𝐴𝐴 . We use the
same �igure for the proof, with the same auxiliary
construction. The con�iguration is depicted in
Figure 4. As earlier, we have drawn a circle tangent
to side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐴𝐴𝐴𝐴 and passing through vertex 𝐴𝐴𝐴𝐴; then
we have extended side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 beyond vertex 𝐴𝐴𝐴𝐴 to meet
the circle again at point 𝐷𝐷𝐷𝐷, and drawn segments
𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 and 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷. Let 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 have length 𝑑𝑑𝑑𝑑.
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Figure 3. Given that ∡A 𝐴𝐴 2∡B, to show that a� 𝐴𝐴 b𝑐𝑐b𝑐𝑐 c𝑐𝑐
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Figure 4. Given that a� = b(b+ c), to show that ∡A = 2∡B

Since 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is tangent to the circle at 𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a
secant, we have the following relation:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, i.e., 𝑎𝑎𝑎𝑎� = 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏).
But we also have the given relation 𝑎𝑎𝑎𝑎� = 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏).
Comparing the two relations, we conclude that
𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏, i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Hence ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. And
since ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, it follows that
∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.
But we also have ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, by the “angle in
the alternate segment” theorem. Hence
∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵∡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, i.e., ∡𝐶𝐶𝐶𝐶 = 𝐵𝐵∡𝐶𝐶𝐶𝐶, as claimed.

Appendix: Integer triples associated
with this theorem
Associated with the Pythagorean theorem
we have the number theoretic problem of

generating Pythagorean triples. In the same
way, associated with the main result derived
in this article, we have another interesting
number theoretic problem: that of generating
integer triples (𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑎𝑎 𝑏𝑏𝑏𝑏) which satisfy the
equation 𝑎𝑎𝑎𝑎� = 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏). We may want to
impose the additional condition that 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑎𝑎 𝑏𝑏𝑏𝑏
are coprime, just as we did in the case of
Pythagorean triples. We already have one
example of such a triple: (6𝑎𝑎 4𝑎𝑎 5). Are there any
others� �es� and they are quite easy to �ind. We
leave this question for the reader to tackle: that
of �inding an ef�icient and effective algorithm for
generating all coprime integer triples (𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑎𝑎 𝑏𝑏𝑏𝑏)
which satisfy the equation 𝑎𝑎𝑎𝑎� = 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏). We
will take up a study of this equation in a
subsequent article.
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