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An impossible relation
An impossible relation

In the accompanying article on Tangrams, a claim was made that it is not possible to find
integers a and b which make any of the following equalities true:

√
6 = a+b

√
2,

√
7 = a+b

√
2,

√
12 = a+b

√
2,

and so on. However, the proofs may not be obvious. In this brief note, we shall prove the
impossibility of the first relation and leave the remaining ones for you to handle.

Claim. It is not possible to find rational numbers a and b such that
√

6 = a+b
√

2. (Note that
we have replaced the word ‘integers’ by ‘rational numbers.’ Thus we are proving a stronger
version of the statement than the original one.)

Proof. As with the proofs of most assertions of this kind, this is a proof by contradiction. We
shall assume that there do exist rational numbers a and b for which

√
6 = a+ b

√
2 and then

show that this assumption leads to a contradiction.

As readers must be familiar with the well-known proof of the irrationality of
√

2, we shall
not bother with repeating the proof. By using virtually the same reasoning, we can also prove
the irrationality of the following numbers:

√
3 and

√
6. We shall assume that you have already

gone through this exercise.

In the relation
√

6 = a+ b
√

2, it cannot be that b = 0, for this would mean that
√

6 is a
rational number. Hence b �= 0. It also cannot be that a = 0. For, if a = 0, then by division we
would get

√
3 = b, which would mean that

√
3 is a rational number. However, we know that

this is not true. Hence a �= 0. So both a and b are non-zero.

Squaring both sides of the relation
√

6 = a+b
√

2, we get: 6 = a2
+2b2

+2ab
√

2, hence:
√

2 =
6−a2 −2b2

2ab
.

In this relation, the denominator is non-zero, implying that
√

2 is a rational number. However,
we know that this is not true. Hence the stated relation cannot hold. That is, it is not possible
to find rational numbers a and b such that

√
6 = a+b

√
2. �
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As has been pointed out in the companion piece on the same 
topic elsewhere in this issue, magic squares have been a 
source of recreation and leisure from ancient times. There 

is something about the symmetry and patterns contained in such 
squares that carry great appeal. In this piece, we shall prove two 
simple results about 3 × 3 and 4 × 4 magic squares. (Such squares 
would also be called third-order and fourth-order magic squares 
respectively.) Considering the ease and elegance with which they 
can be proved, the results will only add further appeal to an already 
wonderful subject.

Terminology. A magic square of order n is an n × n array of distinct 
positive integers with the property that its rows, its columns and 
its two main diagonals all have the same sum. This sum is called the 
magic sum of the square, or the magic constant of the square. A line 
of a magic square is any row, any column or either of the two main 
diagonals of the square. A magic square of order n thus has 2n + 2 
such lines. 

Structure of a Third-Order Magic Square
We shall prove the following simple and pleasing properties which 
are exhibited by any third-order magic square. Let s be the magic 
sum of such a square, and let m be the number in the central cell of 
the square (i.e., the number in row # 2 and column # 2). 
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