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An impossible relation
An impossible relation

In the accompanying article on Tangrams, a claim was made that it is not possible to find
integers a and b which make any of the following equalities true:

√
6 = a+b

√
2,

√
7 = a+b

√
2,

√
12 = a+b

√
2,

and so on. However, the proofs may not be obvious. In this brief note, we shall prove the
impossibility of the first relation and leave the remaining ones for you to handle.

Claim. It is not possible to find rational numbers a and b such that
√

6 = a+b
√

2. (Note that
we have replaced the word ‘integers’ by ‘rational numbers.’ Thus we are proving a stronger
version of the statement than the original one.)

Proof. As with the proofs of most assertions of this kind, this is a proof by contradiction. We
shall assume that there do exist rational numbers a and b for which

√
6 = a+ b

√
2 and then

show that this assumption leads to a contradiction.

As readers must be familiar with the well-known proof of the irrationality of
√

2, we shall
not bother with repeating the proof. By using virtually the same reasoning, we can also prove
the irrationality of the following numbers:

√
3 and

√
6. We shall assume that you have already

gone through this exercise.

In the relation
√

6 = a+ b
√

2, it cannot be that b = 0, for this would mean that
√

6 is a
rational number. Hence b �= 0. It also cannot be that a = 0. For, if a = 0, then by division we
would get

√
3 = b, which would mean that

√
3 is a rational number. However, we know that

this is not true. Hence a �= 0. So both a and b are non-zero.

Squaring both sides of the relation
√

6 = a+b
√

2, we get: 6 = a2
+2b2

+2ab
√

2, hence:
√

2 =
6−a2 −2b2

2ab
.

In this relation, the denominator is non-zero, implying that
√

2 is a rational number. However,
we know that this is not true. Hence the stated relation cannot hold. That is, it is not possible
to find rational numbers a and b such that

√
6 = a+b

√
2. �
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⊗
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As has been pointed out in the companion piece on the same 
topic elsewhere in this issue, magic squares have been a 
source of recreation and leisure from ancient times. There 

is something about the symmetry and patterns contained in such 
squares that carry great appeal. In this piece, we shall prove two 
simple results about 3 × 3 and 4 × 4 magic squares. (Such squares 
would also be called third-order and fourth-order magic squares 
respectively.) Considering the ease and elegance with which they 
can be proved, the results will only add further appeal to an already 
wonderful subject.

Terminology. A magic square of order n is an n × n array of distinct 
positive integers with the property that its rows, its columns and 
its two main diagonals all have the same sum. This sum is called the 
magic sum of the square, or the magic constant of the square. A line 
of a magic square is any row, any column or either of the two main 
diagonals of the square. A magic square of order n thus has 2n + 2 
such lines. 

Structure of a Third-Order Magic Square
We shall prove the following simple and pleasing properties which 
are exhibited by any third-order magic square. Let s be the magic 
sum of such a square, and let m be the number in the central cell of 
the square (i.e., the number in row # 2 and column # 2). 
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Structure of a Fourth-Order Magic Square
Fourth-order magic squares have rather more complex symmetries than third-order magic squares. 
One such symmetry is indicated in Figure 3. We shall prove that if p, q, r, s are the numbers in the cells as 
indicated, then the following equality necessarily holds: 

p + q = r + s.

To prove the claim, it is convenient to use the symbols shown in the array below.

We must prove that a1 + d1 = b4 + c4. We use repeatedly the defining property of a magic square. The sum of 
the numbers in the two main diagonals equals the sum of the numbers in the two middle columns, hence: 

(a1 + b2 + c3 + d4) + (a4 + b3 + c2 + d1) = (b1 + b2 + b3 + b4)+(c1 + c2 + c3 + c4) .

On cancellation of common terms, this simplifies to:

              a1 + d4 + a4 + d1 = b1 + b4 + c1+ c4.

We rewrite this as follows:

(1) a1 + d1 − b1 − c1 = b4 + c4 − a4 − d4.

We also have:

(2) a1 + b1 + c1 + d1 = a4 + b4 + c4 + d4.

Adding equations (1) and (2) we get a1 + d1 = b4 + c4.

Having proved this relation, a number of further such symmetries can be anticipated. Thus, the relation  
p + q = r + s will hold in each of the diagrams shown in Figure 4. The method of proof will be identical in all 
three cases.
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cells as indicated, then the following equality necessarily holds:
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To prove the claim, it is convenient to use the symbols shown in the array below.

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

We must prove that a1 +d1 = b4 + c4. We use repeatedly the defining property of a magic square.
The sum of the numbers in the two main diagonals equals the sum of the numbers in the two middle
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To prove the claim, it is convenient to use the symbols shown in the array below.
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Then we have:

• s = 3m;

• There are four distinct three-term arithmetic progressions (APs) within the square: (i) the numbers in 
the central row, (ii) the numbers in the central column, (iii) the numbers in each of the two diagonals.

Note that if we prove the first assertion, the second one gets proved as well. For, if the three numbers in 
any of the triples referred to above are a, m, b, then we have a + m + b = s = 3m (by the first assertion), 
hence a + b = 2m, i.e., m − a = b − m. This proves that a, m, b form an AP.

To prove the first assertion (s = 3m), we consider the four lines going through the central square (see 
Figure 1). The sum of the three numbers on each line is s, hence the four lines together yield a sum of 4s, 
with some numbers getting counted more than once. Now note that the lines pass through every cell in the 
array, but the central square (which lies on all the lines) gets ‘covered’ four times. So the lines cover every 
cell in the whole array, with the central square getting covered an ‘extra’ three times. The sum of all the 
numbers in the whole array is equal to 3s. These facts together lead to the following equation:

4s = 3s + 3m.

Hence s = 3m, as claimed.

Here are some notable consequences of this result: if the numbers in a third-order magic square are the 
numbers from 1 to 9, then the number in the central cell is necessarily 5. For, the sum of the numbers from 
1 to 9 is 45, so the magic sum is s = 45/3 = 15. This yields m = 5.

Next, using the numbers from 1 to 9, the only three-term arithmetic progressions with central term 5 and 
sum 15 are {1, 5, 9}, {2, 5, 8}, {3, 5, 7} and {4, 5, 6}. These four APs correspond (in some order) to the four 
lines that pass through the central cell of the square. Now consider the lines that contain 1. Since the total 
of the three numbers in any line is 15, the sum of the other two numbers in such a line must be 14. The 
pairs which yield a sum of 14 are the following: {5, 9}, {6, 8}. Observe that there are only two such pairs. 
This implies that 1 cannot occur in a corner of the array (for that would require three pairs). Hence 1 
occurs in the middle of a border row or column. By applying a suitable rotation, we can bring the 1 to the 
top row; this will naturally not disturb the ‘magic’ property. The two lines of which 1 is a part must have 
the pairs {5, 9} and {6, 8} for the remaining two numbers. Of these, the former pair corresponds to the line 
going through the centre of the square. The 6 and 8 may be filled in the top corner cells in either order. 
Once this is done, the remaining cells get filled on their own. The result is shown in Figure 2.
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STRUCTURE OF A FOURTH-ORDER MAGIC SQUARE

Fourth-order magic squares have rather more complex symmetries than third-order magic squares.
One such symmetry is indicated in Figure 3. We shall prove that if p,q,r,s are the numbers in the
cells as indicated, then the following equality necessarily holds:

p+q = r+ s.
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To prove the claim, it is convenient to use the symbols shown in the array below.

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

We must prove that a1 +d1 = b4 + c4. We use repeatedly the defining property of a magic square.
The sum of the numbers in the two main diagonals equals the sum of the numbers in the two middle
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Now write x for a2. Then we have, since the magic sum is 89:

d2 = 89 − 9 − x = 80 − x, a3 = 89 − 25 − x = 64 − x,

d3 = 89 − 64 − (80 − x) = x − 55.

As all the numbers are required to be positive, we must have the following:

x > 55, x < 64,      ∴ 56 ≤ x ≤ 63.

The numbers must also all be unequal, hence x, 80 − x, 64 − x, x − 55 must be different from all of the 
following:

15, 8, 19, 47, 5, 4, 28, 52, 10, 17, 48, 14.

Trying out the choices one by one, we find that x = 57 works. Here is the magic square it yields:

The reader may remark here that we have been lucky: no cases occurred of repeated numbers. Yes, we 
were lucky. But if indeed some repetition of numbers had happened, all that we would have to do is 
backtrack and make a different choice at some stage. In general, there are enough numbers available that 
we will obtain what we seek!

Exercises

Construct fourth-order magic squares in which the numbers in the first row are as given below:

1. (22, 12, 18, 87); this refers to Ramanujan’s birthday (22nd December, 1887);

2. (14, 3, 18, 79); this refers to Albert Einstein’s birthday (14th March, 1879);

3. Your own birthday!

6 SHAILESH SHIRALI

15 8 19 47

57 5 4 23

7 28 52 2

10 48 14 17

The reader may remark here that we have been lucky: no cases occurred of repeated numbers.
Yes, we were lucky. But if indeed some repetition of numbers had happened, all that we would
have to do is backtrack and make a different choice at some stage. In general, there are enough
numbers available that we will obtain what we seek!

Exercises. Construct fourth-order magic squares in which the numbers in the first row are as given
below:

(1) (22,12,18,87); this refers to Ramanujan’s birthday (22nd December, 1887);

(2) (14,3,18,79); this refers to Albert Einstein’s birthday (14th March, 1879);

(3) your own birthday!
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Custom-made fourth-order magic squares! The relations uncovered above provide us with a way 
for constructing fourth-order magic squares in which the numbers in the top row have been filled in an 
arbitrary manner. For example, they could be the numbers which give your birth date. To show how this 
is done, we construct a magic square in which the top row has the numbers 15, 8, 19, 47 (these numbers 
codify an important date in Indian history).

The magic sum of the square is 15 + 8 + 19 + 47 = 89. There are as many as twelve unknowns in this array! 
The first question is: where do we start? We choose to start with the corner cells of the bottom row. We 
have: 

a4 + d4 = 8 + 19 = 27.

Let us arbitrarily assign a pair of values to a4, d4, keeping the above condition in mind. Of course, we make 
sure that we do not use any of the numbers that have already occurred in the top row. Let us choose:  
a4 = 10, d4 = 17. (The choice is purely arbitrary.) We now update the array:

Next we choose to fill the cells in the central 2 × 2 block. We have:

b2 + c3 = 10 + 47 = 57,

b3 + c2 = 15 + 17 = 32.

We arbitrarily select: b2 = 5, c3 = 52, b3 = 28, c2 = 4. These yield: b4 = 89 − (8 + 5 + 28) = 48, c4 = 89 − (19 
+ 4 + 52) = 14. Once again, our choices must be such that no numbers are repeated. We now update the 
array:
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columns, hence:

(a1 +b2 + c3 +d4)+ (a4 +b3 + c2 +d1) = (b1 +b2 +b3 +b4)+ (c1 + c2 + c3 + c4) .

On cancellation of common terms, this simplifies to:

a1 +d4 +a4 +d1 = b1 +b4 + c1 + c4.

We rewrite this as follows:

(1) a1 +d1 −b1 − c1 = b4 + c4 −a4 −d4.

We also have:

(2) a1 +b1 + c1 +d1 = a4 +b4 + c4 +d4.

Adding equations (1) and (2) we get a1 +d1 = b4 + c4. �

Having proved this relation, a number of further such symmetries can be anticipated. Thus, the
relation p+ q = r+ s will hold in each of the diagrams shown in Figure 4. The method of proof
will be identical in all three cases.
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The magic sum of the square is 15+8+19+47 = 89. There are as many as twelve unknowns in
this array! The first question is: where do we start? We choose to start with the corner cells of the
bottom row. We have:

a4 +d4 = 8+19 = 27.

Let us arbitrarily assign a pair of values to a4,d4, keeping the above condition in mind. Of course,
we make sure that we do not use any of the numbers that have already occurred in the top row. Let
us choose: a4 = 10, d4 = 17. (The choice is purely arbitrary.) We now update the array:

15 8 19 47

a2 b2 c2 d2

a3 b3 c3 d3

10 b4 c4 17

Next we choose to fill the cells in the central 2×2 block. We have:

b2 + c3 = 10+47 = 57,

b3 + c2 = 15+17 = 32.

We arbitrarily select: b2 = 5, c3 = 52, b3 = 28, c2 = 4. These yield: b4 = 89− (8+5+28) = 48,
c4 = 89− (19+4+52) = 14. Once again, our choices must be such that no numbers are repeated.
We now update the array:

15 8 19 47

a2 5 4 d2

a3 28 52 d3

10 48 14 17

Now write x for a2. Then we have, since the magic sum is 89:

d2 = 89−9− x = 80− x, a3 = 89−25− x = 64− x,

d3 = 89−64− (80− x) = x−55.

As all the numbers are required to be positive, we must have the following:

x > 55, x < 64, ∴ 56 ≤ x ≤ 63.

The numbers must also all be unequal, hence x, 80− x, 64− x, x− 55 must be different from all
of the following:

15, 8, 19, 47, 5, 4, 28, 52, 10, 17, 48, 14.

Trying out the choices one by one, we find that x = 57 works. Here is the magic square it yields:
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we will obtain what we seek!
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The reader may remark here that we have been lucky: no cases occurred of repeated numbers.
Yes, we were lucky. But if indeed some repetition of numbers had happened, all that we would
have to do is backtrack and make a different choice at some stage. In general, there are enough
numbers available that we will obtain what we seek!

Exercises. Construct fourth-order magic squares in which the numbers in the first row are as given
below:

(1) (22,12,18,87); this refers to Ramanujan’s birthday (22nd December, 1887);

(2) (14,3,18,79); this refers to Albert Einstein’s birthday (14th March, 1879);

(3) your own birthday!
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