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In this issue, we shall modify the proof to obtain a
generalisation of this result, known as Routh’s
theorem. But before we do that, we offer a ‘pure
geometry’ proof for the formula for 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. We show
that the derivation can be done by using the
geometry of similar triangles. The derivation is
due to Swati Sircar of Azim Premji University.

A Pure Geometry Proof
In general, a solution by pure geometry involves
the construction of a few (appropriately and
ingeniously chosen) auxiliary lines and circles.
Here the steps we perform are the following:
draw lines through 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵 parallel respectively to
segments 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴. These lines intersect in
pairs and create triangle 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 (Figure 2). Extend
segments 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 to meet lines 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐵𝐵 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐵𝐵 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 at
points 𝑈𝑈𝑈𝑈𝐵𝐵 𝑈𝑈𝑈𝑈𝐵𝐵𝑈𝑈𝑈𝑈 respectively. Observe that in the
resulting �igure there are numerous triangles
similar to △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. We shall use these similarity
relations to arrive at the desired answer.
Our strategy will be to �irst �ind the ratios
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵    .
We start by examining the ratios 𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
We already know the ratio 𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, for by
similarity,

𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 − 𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓 .

As the ratio 𝑓𝑓1 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓 recurs all through the
computation, it is convenient to have a symbol to
denote it. Let 𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓; then
𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘, and also
𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  , 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  , 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  .

A

B CD

E

F

P

Q
R

U

V

W

X

Y

Z

Figure 2.

Let 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈 𝑈 𝑃𝑃𝑃𝑃; we must determine 𝑃𝑃𝑃𝑃. We then
have (the situation being schematically depicted
as in Figure 3):

𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃  (2)

By similarity we have 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Since
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  , it follows that

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 1𝑓𝑓𝑓 (3)

Next, we have 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵     and
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃 .

Hence 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵        , and:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵      𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵    𝐵
𝐴𝐴 𝑘𝑘𝑘𝑘�𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃     𝑃𝑃𝑃𝑃𝑃 (4)
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How To
Prove It
In this article, we offer a second proof of the triangle-in-a-
triangle theorem, using the principles of similarity geometry.
Then, using vectors, we prove a result which is a generalisation
of that theorem. We also give a pure geometry proof of the
generalisation.

Given an arbitrary △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and a number 𝑡𝑡𝑡𝑡 between 0 and 1,
we locate points𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 on sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (see Figure 1)
such that

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡

Segments 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 when drawn intersect and demarcate a
triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 within the larger triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The question now
is: What is the ratio 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓 of the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴?
We showed in the previous issue that

𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓 = 𝑓𝑓2𝑡𝑡𝑡𝑡 𝑡𝑡 1𝑓𝑓�
1 𝑡𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡� 𝑡𝑡 (1)
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Figure 1.

Keywords: Routh’s theorem, triangle, ratio, area, similarity, vector
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In this issue, we shall modify the proof to obtain a
generalisation of this result, known as Routh’s
theorem. But before we do that, we offer a ‘pure
geometry’ proof for the formula for 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. We show
that the derivation can be done by using the
geometry of similar triangles. The derivation is
due to Swati Sircar of Azim Premji University.

A Pure Geometry Proof
In general, a solution by pure geometry involves
the construction of a few (appropriately and
ingeniously chosen) auxiliary lines and circles.
Here the steps we perform are the following:
draw lines through 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵 parallel respectively to
segments 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴. These lines intersect in
pairs and create triangle 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 (Figure 2). Extend
segments 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 to meet lines 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐵𝐵 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐵𝐵 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 at
points 𝑈𝑈𝑈𝑈𝐵𝐵 𝑈𝑈𝑈𝑈𝐵𝐵𝑈𝑈𝑈𝑈 respectively. Observe that in the
resulting �igure there are numerous triangles
similar to △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. We shall use these similarity
relations to arrive at the desired answer.
Our strategy will be to �irst �ind the ratios
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵    .
We start by examining the ratios 𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
We already know the ratio 𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, for by
similarity,

𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 − 𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓 .

As the ratio 𝑓𝑓1 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓 recurs all through the
computation, it is convenient to have a symbol to
denote it. Let 𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓; then
𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘, and also
𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  , 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  , 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  .
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Figure 2.

Let 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈 𝑈 𝑃𝑃𝑃𝑃; we must determine 𝑃𝑃𝑃𝑃. We then
have (the situation being schematically depicted
as in Figure 3):

𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃  (2)

By similarity we have 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Since
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  , it follows that

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝐴𝐴 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 1𝑓𝑓𝑓 (3)

Next, we have 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵     and
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑈𝑈𝑈𝑈𝑃𝑃𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃 .

Hence 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵        , and:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵      𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵    𝐵
𝐴𝐴 𝑘𝑘𝑘𝑘�𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃     𝑃𝑃𝑃𝑃𝑃 (4)
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As earlier, segments 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 when drawn
intersect and demarcate a triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 within
the larger triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The question now is:
What is the ratio 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔 of the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to
that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴?
Let 𝐴𝐴𝐴𝐴 be treated as the origin, and let

������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 c𝐴𝐴 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 a.

By construction we have

�������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔c𝐴𝐴 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  𝑔𝑔a− c𝑔𝑔 𝐴𝐴
������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵𝐵𝐵 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵a.

Let 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴. To �ind the unknown quantity 𝐴𝐴𝐴𝐴,
we argue as follows.

�������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 �������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 −a𝐴𝐴 𝐴𝐴𝐴𝐴c𝐴𝐴

∴ ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑃𝑃 𝐴𝐴𝐴𝐴 �������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐴𝐴𝐴𝐴a𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴c𝐴𝐴

∴ ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴c.

We also have, by similar logic or by using the
section formula:

������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴 − 𝑔𝑔𝑔𝑔𝑔𝑔c.

Now consider the last two results we have
obtained:

������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴c𝐴𝐴 (9)
������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴 − 𝑔𝑔𝑔𝑔𝑔𝑔c. (10)

Vectors ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are parallel and have been
expressed in terms of the non-zero, non-parallel
vectors a and c. Hence a and cmust be mixed in
the same proportions in ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and we have:

𝐴𝐴 − 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 . (11)

This allows us to �ind the unknown quantity 𝐴𝐴𝐴𝐴:
𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . (12)

In the same way (or by using symmetry), we �ind
the ratios 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

Having found these ratios, we see next that

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

We also know that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔. From this it
follows that:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵

Hence by multiplication we get:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

In the same way (or by using symmetry), we �ind
that:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

Hence we have:
Area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

This yields the desired formula

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔 𝐵𝐵 𝐵𝐵𝐵  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . (13)

This result is generally known as Routh’s
theorem, named after Edward John Routh who
�irst mentioned it in a book published in 1�9�.
(However, it appears to have been known much
before that date. It was used as an examination
question in the famous Mathematical Tripos.)
We may verify after algebraic manipulation that
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. If we de�ine a new set of
quantities 𝑥𝑥𝑥𝑥𝐴𝐴 𝑥𝑥𝑥𝑥𝐴𝐴 𝑥𝑥𝑥𝑥 by:

𝑥𝑥𝑥𝑥 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴
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Nowwe return to the original segment 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (so
the wheel has “turned full circle”). Since
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, we have:

1 + (𝑘𝑘𝑘𝑘 + 1𝑘𝑘𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘 𝐵𝐵 𝑘𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘 ,

∴ 𝑘𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘� 𝐵𝐵 𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘�𝑘𝑘𝑘𝑘�,

∴ 𝑘𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘𝑘� 𝑘𝑘 1
𝑘𝑘𝑘𝑘� + 𝑘𝑘𝑘𝑘 + 1 𝐵𝐵 𝑘𝑘𝑘𝑘 𝑘𝑘 1,

a compact and pleasing result. On substituting
this into the various expressions, we �ind that

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵   𝐵𝐵 𝐵 𝐵𝐵 𝑅𝑅𝑅𝑅 𝐵𝐵 𝐵𝐵𝐵  𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅 (5)

In particular we have 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.
Next we determine the ratio 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. We have:

𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝐵𝐵 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝑅𝑅𝑅𝑅
1 𝑘𝑘 𝑘𝑘𝑘𝑘 , ∴ 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵

This implies that
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 𝐵𝐵 𝑅𝑅𝑅𝑅 𝐵𝐵 1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘 𝐵𝐵 𝑅𝑅𝑅𝑅�, (6)

and it yields:
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 𝐵𝐵 1 𝑘𝑘 𝑘𝑘𝑘𝑘

1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  � 𝑅𝑅 (7)

The ratios 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 are given by the
same expression. The rest of the derivation
proceeds as in the vector solution: the ratio of the
sum of areas of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 to △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
is

1 𝑘𝑘 𝑘𝑘𝑘𝑘
1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  � × 3𝑅𝑅𝑅𝑅 𝑅𝑅 3𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅

1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  � ,
hence the required ratio is 1minus this quantity,
i.e.:

Area (△𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
Area (△𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝐵𝐵 1 𝑘𝑘 3𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅

1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  �

𝐵𝐵 (1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘�
1 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  � 𝑅𝑅 (8)

Remark. Before proceeding, we pause to
consider a special case of the above formula. Put
𝑅𝑅𝑅𝑅 𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡(𝑅𝑅𝑡𝑡𝑡𝑡 + 1𝑘𝑘; then we get, after simpli�ication:

Area (△𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
Area (△𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝐵𝐵

1
1 + 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡� 𝑅𝑅

This value of 𝑅𝑅𝑅𝑅 corresponds to dividing the sides
of the triangle into 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅   equal parts (using 𝑅𝑅𝑅𝑅𝑅𝑅
points equally spaced along the sides) and
requiring that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   lie at the points of division
which are closest to the respective side midpoints.
As you can see, it results in a simple formula for
the areal ratio. The choice 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅     (which
comes from 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡 ) corresponds to trisecting the
sides; it results in the areal ratio 1 𝐵𝐵 7.
The denominator in the above formula,
3𝑡𝑡𝑡𝑡� + 3𝑡𝑡𝑡𝑡 𝑡𝑡 , generates the following sequence
(by putting 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑛𝑛, 1, 𝑅𝑅, …):

1, 7, 19, 37, 61, 91, … 𝑅𝑅

These numbers are the differences between
consecutive cubes: 1 𝐵𝐵 1� 𝑘𝑘 𝑘𝑘�, 7 𝐵𝐵 𝐵𝐵� 𝑘𝑘 1�,
19 𝐵𝐵 3� 𝑘𝑘 𝑘𝑘�, and so on. To see why this is true in
general, note the following simple identity:
3𝑡𝑡𝑡𝑡� + 3𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡   𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 � 𝑘𝑘 𝑘𝑘𝑘𝑘�. The very same
numbers are generated by the sequence of
centred hexagonal dot �igures shown in Figure 4.
This explains why they are sometimes called the
centred hexagonal numbers.

Routh’s Theorem
Nowwe consider a more somewhat general
con�iguration. We start as earlier with an
arbitrary △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, but now we have three numbers
𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢 (rather than just one number 𝑅𝑅𝑅𝑅), all
between 𝑛𝑛 and 1. We now locate points 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   on
sides 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (see Figure 5) such that

𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝑢𝑢𝑢𝑢, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵

1 7 19 37

Figure 4.
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Figure 5.

As earlier, segments 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 when drawn
intersect and demarcate a triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 within
the larger triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The question now is:
What is the ratio 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔 of the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to
that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴?
Let 𝐴𝐴𝐴𝐴 be treated as the origin, and let

������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 c𝐴𝐴 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 a.

By construction we have

�������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔c𝐴𝐴 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  𝑔𝑔a− c𝑔𝑔 𝐴𝐴
������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵𝐵𝐵 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵a.

Let 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴. To �ind the unknown quantity 𝐴𝐴𝐴𝐴,
we argue as follows.

�������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 �������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 −a𝐴𝐴 𝐴𝐴𝐴𝐴c𝐴𝐴

∴ ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑃𝑃 𝐴𝐴𝐴𝐴 �������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐴𝐴𝐴𝐴a𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴c𝐴𝐴

∴ ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝐴𝐴 − 𝐴𝐴𝐴𝐴𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴c.

We also have, by similar logic or by using the
section formula:

������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴 − 𝑔𝑔𝑔𝑔𝑔𝑔c.

Now consider the last two results we have
obtained:

������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴c𝐴𝐴 (9)
������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔a𝐴𝐴 𝐴𝐴𝐴𝐴 − 𝑔𝑔𝑔𝑔𝑔𝑔c. (10)

Vectors ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are parallel and have been
expressed in terms of the non-zero, non-parallel
vectors a and c. Hence a and cmust be mixed in
the same proportions in ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and ������𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and we have:

𝐴𝐴 − 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 . (11)

This allows us to �ind the unknown quantity 𝐴𝐴𝐴𝐴:
𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . (12)

In the same way (or by using symmetry), we �ind
the ratios 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

Having found these ratios, we see next that

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐴𝐴 − 𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

We also know that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔. From this it
follows that:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵𝐵𝐵𝐵

Hence by multiplication we get:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

In the same way (or by using symmetry), we �ind
that:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

Hence we have:
Area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵 𝐵𝐵 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 .

This yields the desired formula

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔 𝐵𝐵 𝐵𝐵𝐵  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔

𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔𝑔𝑔𝑔𝑔
𝐴𝐴 − 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . (13)

This result is generally known as Routh’s
theorem, named after Edward John Routh who
�irst mentioned it in a book published in 1�9�.
(However, it appears to have been known much
before that date. It was used as an examination
question in the famous Mathematical Tripos.)
We may verify after algebraic manipulation that
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔 𝐵𝐵 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. If we de�ine a new set of
quantities 𝑥𝑥𝑥𝑥𝐴𝐴 𝑥𝑥𝑥𝑥𝐴𝐴 𝑥𝑥𝑥𝑥 by:

𝑥𝑥𝑥𝑥 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴
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then the statement of the result assumes a slightly
more convenient form:
Area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

= (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥�
(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 . (14)

Pure geometry proof of Routh’s theorem. Pure
geometry proofs of the theorem have been known
for some time. We conclude this article with one
such proof which appeared in the magazine Crux
Mathematicorum; see [2]. The proof is due to
James S. Kline and Daniel J. Velleman, and is both
ingenious and compact.
In Figure 5, we have drawn lines through 𝑃𝑃𝑃𝑃 which
are parallel to the sides of the triangle, thus giving
rise to segments 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺.
(Note: we have suppressed the labels of points
𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝐹𝐹 𝑃𝑃𝑃𝑃 to avoid a visual clutter.) Our objective is to
�ind the ratio of the area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 to the area of
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Towards this end, we shall �ind the ratio
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐽𝐽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. We shall work in terms of 𝑥𝑥𝑥𝑥𝐹𝐹 𝑥𝑥𝑥𝑥𝐹𝐹 𝑥𝑥𝑥𝑥 rather
than 𝑢𝑢𝑢𝑢𝐹𝐹 𝑢𝑢𝑢𝑢𝐹𝐹 𝑢𝑢𝑢𝑢. (Recall that 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐽𝐽𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 , 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐽𝐽𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴
and 𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 = 𝑥𝑥𝑥𝑥.) By triangle similarity, we have:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 =

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑥𝑥

𝑥𝑥𝑥𝑥 𝐹𝐹

hence 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼  𝑃𝑃 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃.
Again,△𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃 △𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃 and△𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, hence:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑥𝑥

𝑥𝑥𝑥𝑥 𝐹𝐹

hence 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  .
The expressions for the lengths of 𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 now
lead to the following:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    𝐴𝐴𝐴𝐴
= 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼

= 𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

Hence we have:
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑥𝑥

𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥.

The ratio of the altitudes of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 and △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
through 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐴𝐴 respectively must be given by the
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Figure 6.

same expression, 𝑥𝑥𝑥𝑥𝐽𝐽𝐽𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥. As the two
triangles share the same base 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the ratio of the
area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 to that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is given by that
very same expression:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥.

We derived this expression by drawing lines
through 𝑃𝑃𝑃𝑃 which are parallel to the sides of△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
By similarly drawing lines through 𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃
respectively which are parallel to the sides of the
triangle (we have not shown these lines), we
derive expressions for the ratios of the areas of
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 to that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. We obtain the
following:

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝐹𝐹

Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥.

Hence:

Area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
Area of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥

𝑥𝑥 𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥

= (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥�
(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥

The last step requires a bit of algebraic jugglery,
which we leave you to undertake. For more on
Routh’s theorem, see [1] and [3].
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