Triangle Equalizers

A Probabllistic
Approach

Part |

n equalizer of a triangle is a line which divides it into two
A regions having equal areas as well as equal perimeters.

Every triangle has at least one and at most three
equalizers. In [1], triangles of all three types are identified and it
is remarked that triangles with two equalizers are quite rare. In
[2], an example of such a triangle is given. In this two-part note,
we simplify the results of [1]. In particular, we show that in a
certain probabilistic sense, the probability that a triangle taken at
random has two equalizers is 0. The method is based on the
roots of quadratic equations, a technique already initiated in [2].
In Part II, we estimate the probabilities that a triangle taken at
random has a given number of equalizers. In particular, we show
that more than 85% of the triangles have only one equalizer.
Using Mathematica, the figure is found to be close to 98%.

Introduction and Terminology

As usual, given a triangle ABC, we denote its sides opposite to
A, B, Cby a, b, c respectively, its semi-perimeter %(ﬂ +b+c) by
s and its incentre by /. Suppose a line ¢ is an equalizer of ABC.
Then it is easy to show (see, e.g. [2]) that £ passes through /.
Consequently, if £ passes through some vertex, say A, of ABC,
then it must be the line A7 whence the triangle must be isosceles
with AB = AC. In all other cases, an equalizer must cut two of
the three sides internally. Without loss of generality, we take
these sides to be AB and AC and denote their points of
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intersection with ¢ by X and Yrespectively. We
say that this equalizer is opposite to the side a. (See
Figure 1.)

Figure 1. Equalizer opposite to «

Since a triangle can have at most three equalizers,
the probability that a randomly taken line passing
through the incentre of a triangle is an equalizer of
it is 0. But the problem we address here is that of
determining with what probabilities a randomly
taken triangle has 1, 2 or 3 equalizers.

We first consider the problem of determining the
conditions under which ABC has an equalizer
opposite to a. For this we let x = AXand y = AY.
Then by definition of an equalizer, x + y = s and
Xy = %bc. These equations together imply that x
and y are the roots of the quadratic polynomial

1
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A direct calculation gives
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The existence of an equalizer opposite to  is
equivalent to f{p) having two (possibly equal) roots,
one lying in the interval (0, &) and the other in

(0, ¢). This observation, coupled with the equations

2

above, enables us to determine the number of
equalizers opposite to  depending upon how «
compares with & and ¢. To avoid degeneracies, we
first consider only scalene triangles, i.e., triangles
ABC where a, b, c are distinct.
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Numbers of Equalizers in Scalene Triangles

We assume that 4, &, ¢ are all distinct. We consider
three cases depending upon where # is placed
compared with & and c.

(i)  Suppose first that « is the longest side. Then
both A{4) and f{c) are negative. As the
leading coefficient of f{p) is positive, this
means that 4, ¢ lie between the two roots of
Ap). Hence the larger of the two roots is
bigger than both 4, ¢, violating the
requirement of an equalizer that one root
must be less than 4 and the other one less
than ¢. So in this case, though the quadratic
(1) has real roots, there is no equalizer
opposite to 4.

(ii)  Assume that # lies between 4 and ¢. Without
loss of generality, assume that & < 2 < c.
Then f{0) > 0,A6) < 0and f{c) > 0. So,
by continuity of the quadratic function, f
has at least one root in the interval (0, &)
and at least one root in the interval (4, c). As
there are only two roots, there is exactly one
root in (0, &) and one in (4, c). So there is
exactly one equalizer opposite to &, viz. the
line XY with x representing the larger and y
the smaller root. (Note that the roots cannot
be interchanged because of the inequalities
they must satisfy.)

(iii) Assume that # is the smallest side. This is the
most interesting case. The quadratic (1) may
not have any real roots in this case, as
happens, for example, when (4, b, c) =
(3,4,5). But we claim that if at all (1) has a
root, then every root gives rise to an
equalizer opposite to . (In [2], this is
mentioned only as a possibility. We claim
that it is a certainty.)

So assume that s> > 2bc, and let x, y be the
roots of f{p) with x < y. Without loss of
generality, assume that 2 < & < ¢. Here
fla), f(b), flc) are all positive, so mere
continuity of the quadratic is not of much
help. Here we use the fact that the graph of
f(p) is a parabola with its lowest point at

p = 5/2 and symmetric about the line p =
5/2. Figure 2 shows a sketch of the graph for



0 < p < s. The portion from 0 to 5/2 is
strictly decreasing, while that between s/2
and s is strictly increasing. Note further that
x lies in the left half and y in the right half,
ie. x <s/2ands/2 <y. (If = 2bc, then
both the roots equal 5/2, and the parabola
touches the p-axis. This happens, for
example, when (4, b,¢) = (7,8,9).)

f)
A

\ 5/2
x\/}/ 5 > P

Figure 2. Graph of the quadratic Ap)

Since f{6) > 0, b cannot lie in the interval
[x, y]. We claim that & lies to the right of this
interval, i.e. that both x and y are less than &
(and hence ¢ too). For, if this is not so, then
b and hence « too must lie to the left of x.
But as fis strictly decreasing on [0, x] this
would mean f{) > f{4). But on the other
hand fla) < f(4), a contradiction.

Thus we have shown that if at all (1) hasa
root, then both roots lie in the interval

(0, 6) and hence in the interval (0, ¢) too. If
they are equal, there will be only one
equalizer XY opposite to 2. Moreover, it will
be perpendicular to the angle bisector A/
because AAXY is isosceles. But if the roots x
and y are distinct, then XY will be an
equalizer opposite to @ and so will be X'Y’
where X' Y’ are points on AB, AC at
distances y and x respectively from A. (As
already noted, a similar interchange was not
possible in (ii) above.)

Summing up, we have shown that a scalene
triangle has no equalizer opposite to its longest
side, one equalizer opposite to its middle side, and

either 0, 1 or 2 equalizers opposite to its shortest
side. These three possibilities occur according as s*
is less than, equal to or greater than, twice the
product of the two longer sides. The three
possibilities are illustrated by the triangles with
sides (13, 16, 19), (14,16, 18) and (15,16, 17)

respectively, with s being 24 in each case.

The reasoning here can be modified to include
cases of equality of some pairs of sides. Suppose,
for example, that AABC is isosceles with AB =
AC > BC. Then a is the shortest side. Both 4 and
¢ can be considered as the middle side if we drop
the strictness of inequalities, because we have 2 <
b < cand also 2 < ¢ < 4. In this case, one root of
the quadratic p2 —sp+ %ﬂb is b, and the other

1
2
the median through A. This is also the equalizer

opposite to c.

root is ;4. So the equalizer opposite to & is simply

Triangles with Two Equalizers

The above analysis provides a complete
characterization of triangles having exactly two
equalizers.

Theorem 1. A triangle ABC has exactly two
equalizers if and only if one of the following two
possibilities holds:

(i) AABC is scalene, and s* equals twice the
product of the two longer sides.

(i)  AABC is isosceles, and its unequal angle is
equal to 2sin"' (v/2 — 1).

Proof. The case of a scalene triangle was already
considered above. An equilateral triangle has (at
least) three equalizers; namely, its three medians.
(It is easy to show that it cannot have any others.
But that is not needed here.) So the only
possibility left is one where AABC is isosceles
with AB = AC # BC (say). Here we have b = ¢
and 2 # 4. The median through A is an equalizer.
It operates simultaneously as an equalizer opposite
to both 4 and ¢. So, the second equalizer, if any,
must be opposite to . If 2 > b, then this is
impossible; the reasoning is similar to case (i) of
the scalene triangles, because in this case too, (1)
cannot have any roots less than & (or ¢).
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It remains to deal with the case where & = ¢ > a.
Here too, the argument in case (iii) for scalene
triangles goes through and shows that there is a
unique equalizer opposite to « if and only if &* =
2bc = 2%, ie. ifand only if s = \/5/7. But, on
the other hand, s = 6 + %a. Hence:

Z=%ﬁ—w- 3)

The cosine formula (along with & = ¢) now gives

20 — &
cosA:T/ZI—Z(\/E—l)Z
= 4y/2 -5, (4)

1
- 2sin? EA =1—cosd= 2(\/5 — 1)2, (5)
which yields A = 2sin~'(v/2 — 1). U

We remark that using the work done above, we
can similarly give a complete classification of
triangles with three equalizers in terms of the
inequalities to be satisfied by its sides. This
classification is simpler than that given in [1]. We
omit it as our concern here is triangles which have
exactly two equalizers. Later (Theorem 4, in Part
II) we shall revisit the problem.

In [1], the angle 2sin™! (/2 — 1) ~ 48°56/23" ~
49° is denoted by Ay, and the author regards it as
full of surprise and drama. This angle also comes
up as an upper bound on the smallest angle in any
triangle which has exactly two equalizers as we
now show. (Later we shall see that this angle also
plays a crucial role in the calculation of the
probabilities with which a triangle at random has a
given number of equalizers.)

Theorem 2. [ a triangle with exactly two
equalizers, the smallest angle can be ar most equal ro

Ay = 2sin"1(v/2 — 1).

Proof. The case of an isosceles triangle follows
from (ii) of the last theorem. (In fact, here the
smallest angle actually equals Ay.) Now suppose
that (i) holds, i.e. that AABC is scalene and has
two equalizers. Without loss of generality, suppose
a < b < c. Then we claim that A < A by
showing that cos A > cos Ay. For such a triangle,
we have s* = 2bc and hence (a2 + 6 + ¢)* = 8éx,
which implies 2 = 8be— b — . Putting this
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into the cosine formula and using the A.M.-G.M.
inequality, we get:

b+ * — (V8be— b— ¢)?

cosA =
2be
~ 2V8be(b+¢) — 10bc
B 2bc
4+/8bc — 104
> 224\/5—5:5051407
2bc
which completes the proof. O

We now prove a result which is a sort of converse
to this theorem.

Theorem 3. Given any a with 0 < o < Ay, there
exists a triangle which has exactly two equalizers and
whose smallest angle is oo. Moreover such a triangle is
unique up to similarity.

Proof. The case where oo = Ay is already settled by
Part (ii) of Theorem 1. So suppose 0 < o < Ap.
We construct a scalene AABC in which L4 = «,
a is the shortest side and s* = 26c. Indeed, we let s
be arbitrary. In view of s* = 2éc, the requirement
that £A4 = « is equivalent to

b+ — (25— b—c)?

coso = 2
_ 4(b+c)s—55
S —
which reduces to
b+c= %ﬂs. (6)

We solve this simultaneously with s* = 2b¢ and
find that 4 and ¢ are the roots of the quadratic
equation

(5+cosa)s 5

7——F 4+5=0 (7)

By a direct calculation, the roots of this quadratic
are

(54 cosa) £ /(5 + cos)? — 32
o 5.
For the roots to be real and distinct, we must
ensure that (5 + cos oz)2 > 32, which reduces to
cosa > 41/2 — 5 = cos Ay. Since we have
assumed that o < Ay, this requirement is satisfied.
Thus, the quadratic (7) has two distinct real roots.

(8)



We let & be the smaller root and ¢ the larger one.
Finally, we let

a=2s—(b+c)= <2_5+%sa>s

_ 3 —205 ozS’ 9)

which is clearly positive. To ensure that 4, b, ¢ so
defined form a scalene triangle with # as its
shortest side, we must prove that 2 < 4 and also
that 2 + & > ¢. Recalling that & is given by the
negative sign in (8), proving 2 < & is equivalent to
proving that

3 —cosa \/(5—|—cosoz)2—32<5—|—cosoz
4 8 8
which simplifies to showing that

\/(S—I—cosa)2—32 <3 cosa—1. (10)

The RHS is positive because cos a > 41/2 — 5.
Therefore, (10) can be proved by comparing the
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squares of both the sides. Finally, showing that
a+ b > cis equivalent to showing thata > ¢ — 4
and reduces to proving that
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which, again, is proved by comparing the squares

of both the sides.

Thus we have found a scalene AABC with z as its
shortest side, £ 4 = a and s* = 2bc. The only
other such triangle would be one where 4 and ¢ are
interchanged. But these two triangles are
congruent to each other. Since the ratios of the
sides to each other are uniquely determined by «,
the triangle is unique up to similarity. O

In the second part of this article, we shall show
how to estimate the probability that a randomly
chosen triangle has 1, 2 or 3 equalizers.
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