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How To
Prove It

Polyomino as a natural generalisation of a domino
We are familiar with the notion of a domino, which is a shape
produced by joining two unit squares edge-to-edge. If we divide
this object into two equal parts, we get a monomino. See
Figure 1.

Monomino Domino

Figure 1. Monomino and domino

A polyomino is a natural generalisation of this notion, where we
allow the number of unit squares to vary. For example, using
three unit squares, the shapes shown in Figure 2 are possible.
They are called trominoes.

Straight tromino L-tromino

Figure 2. The two trominoes
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had been posed and studied about polyominoes. 
In this article, we consider and prove two 
specific results concerning these objects, and 
make a few remarks about an open problem.
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Similarly, by joining four unit squares edge-to-edge, the shapes shown in Figure 3 are possible. They are
called tetrominoes. The names given to the individual shapes are shown alongside.

Straight L T Z Square

Figure 3. The five tetrominoes

For n = 5, the shapes are called pentominoes. It turns out that there are 12 possible pentominoes. We
invite you to list them. For n = 6, the shapes are called hexominoes. As you may guess, there are a large
number of these figures.

In general, we may define a polyomino as “a plane geometric figure formed by joining one or more equal
squares edge-to-edge.” (This is the definition given in [3]. See also [4]. For more about polyominoes, you
may refer to the highly readable accounts in [1] and [2].)

As we increase the number of unit squares, more complex shapes become possible. For example, we may
get shapes with ‘holes’ such as the one shown in Figure 4.

Figure 4. A 7-omino with a hole

Perimeter and number of sides of a polyomino
An n-omino is a plane geometric figure formed by joining n equal squares edge-to-edge. In this section we
focus on two numbers associated with this object: its perimeter, and its number of sides. Note that by
definition, the area of an n-omino is n square units. Table 1 lists the perimeter P and number of sides k for
all polyominoes with area not exceeding 4.

Area, n Shape Perimeter, P Number of sides, k
1 Monomino 4 4
2 Domino 6 4
3 Straight tromino 8 4
3 L-tromino 8 6
4 Straight tetromino 8 4
4 L-tetromino 10 6
4 T-tetromino 10 8
4 Z-tetromino 10 8
4 Square tetromino 8 4

Table 1
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On examining the data, we see something noteworthy right away: P and k are even numbers in every case.
Will this be the case for polyominoes with larger numbers of sides? We shall show that the answer is Yes.
The proofs we offer are very instructive, as they use the notion of parity.

Proof that the perimeter P is even. The sides of the unit squares making up a polyomino give rise in a
natural way to two mutually perpendicular directions which we may regard as a pair of coordinate axes.
Let these axes be drawn; the outer boundary of a polyomino is now entirely composed of segments of unit
length, each parallel to the x-axis or the y-axis.

Now let us take a walk around the outer boundary of the polyomino, advancing in steps of unit length and
marking a dot at each lattice point along our path. (We must fix a direction for our tour; let us assume that
we walk in the counterclockwise direction.) The number of steps we take clearly equals the perimeter P of
the polyomino. With each step, our location changes in the following way: either the x-coordinate
changes by 1 unit, or the y-coordinate changes by 1 unit; but not both at the same time. Hence if P1 and
P2 are two successive lattice points along the path, then P1 − P2 is one of the following:

(1, 0), (−1, 0), (0, 1), (0,−1).

Let a, b, c, d be the respective number of steps of each of the above types, as we traverse the outer
boundary. Then:

P = a+ b+ c+ d.

After a full circuit, the total change in the x-coordinate must be 0; hence a = b. In the same way, we must
have c = d, because the total change in the y-coordinate must be 0. Hence:

P = 2a+ 2c = 2(a+ c).

It follows that P is an even number. �
Figure 5 illustrates the meanings of the parameters a, b, c, d for the polyomino depicted in Figure 4, the
path being described by the arrows.

→ → →

↑

↑

←

↓

←

↑

→
↑

←←

↓

↓

↓

• a = 4, c = 4
• b = 4, d = 4

Figure 5. Traversing the outer boundary of the 7-omino shown earlier

Proof that the number of sides is even. Suppose that the polyomino is a k-sided polygon (or k-gon for
short), with k vertices. (Note that the polygon need not be convex.) Let the vertices be P1, P2, . . . , Pk. As
we traverse the outer boundary in the counterclockwise direction, let the angle through which we need to
turn at vertex Pi be θi (angles measured in degrees); then θi = ±90 for each i. Let a be the number of
vertices where we make a +90◦ turn, and let b be the number of vertices where we make a −90◦ turn;
then k = a+ b, and the total turning angle is 90(a− b)◦.

Now, for any polygon, the total turning angle as we traverse the outer boundary is necessarily a multiple of
360◦. In the case of a convex polygon, the total turning angle is exactly ±360◦, but for polygons with
regions of non-convexity and/or holes, the total turning angle may be a higher multiple of 360◦. Figure 6
shows examples: (a) where the total turning angle is 360◦; (b) where the total turning angle is 720◦.
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(a) (8 × 90◦)− (4 × 90◦) = 360◦ (b) 8 × 90◦ = 720◦

Figure 6. Total turning angle for a polyomino

From this reasoning, we deduce that 90(a− b) is a multiple of 360, and therefore that a− b is a multiple
of 4. Hence a− b is an even number. Therefore, a+ b = (a− b) + 2b is an even number as well. That is,
k is even. So the number of sides of the polyomino is an even number. �

Unsolved problems
There is just 1 monomino, and just 1 domino; there are 2 trominoes, and 5 tetrominoes. These numbers
give rise to an interesting but difficult problem. For any positive integer n, let f(n) denote the number of
different n-ominoes. Care is needed in interpreting the word ‘different.’ We regard two shapes as ‘the
same’ if they are geometrically congruent to each other (‘congruent’ in the usual, Euclidean sense of that
word); and two shapes are ‘different’ if they are not congruent to one another. With this understanding,
we find the following values taken by the function f.

n 1 2 3 4 5 6 7 · · ·
f(n) 1 1 2 5 12 35 108 · · ·

The 12 possible pentominoes are depicted in Figure 7. We will leave it to you to sketch the 35 possible
hexominoes. Or you may refer to [3] for some sketches.

Figure 7. The 12 pentominoes
Source: https://simple.wikipedia.org/wiki/Pentomino#/media/File:Pentominos.svg.

Now for the problems that these numbers suggest: (a) Given n, is there a simple way of computing the
value of f(n)? (b) Is there a simple formula for f(n)? As of now, the answers to both questions appear to be
No, and the only known way to compute f(n) for higher values of n is to use computer-assisted
enumeration, based on clever algorithms. Using such means, the sequence of values of f has been obtained
to many terms (the first two values are f(1) = 1 and f(2) = 1):

1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255,
50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728,
654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603, . . ..
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In this short note we present a classroom vignette involving
surds. Its origin lies in the following problem.

Problem. Simplify the following expression:
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. (Note the telescopic cancellation.)

It is nice to see an instance of irrational numbers adding up to a
rational number!

1

Bharat Karmarkar

Keywords: Surd, irrational, telescoping sum, arithmetic progression, 
exploration
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These two questions and others of their kind continue to remain unanswered at the present moment.
However, it has been shown (see [1] and [4]) that 3.72n < f(n) < 4.65n for all positive integers n.
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Would you believe that . . .

69720375229712477164533808935312303556800

. . . is the smallest positive integer that is exactly divisible by each number from 1 to 100?
In how many ways can you arrive at this number?

Which is the smallest number which does not divide this number?
If any of your students come up with a well-thought-out response, do share it with us.

Our e-mail ID is atria.editor@apu.edu.in.

— Adapted from Moloy De’s Facebook page “Math Believe It or Not”.  
See: https://www.facebook.com/photo.php?fbid=10206841050456928&set=

gm.992345247471454&type=3&theater.
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Would you believe that . . .

69720375229712477164533808935312303556800

. . . is the smallest positive integer that is exactly divisible by each number from 1 to 100?
In how many ways can you arrive at this number?

Which is the smallest number which does not divide this number?
If any of your students come up with a well-thought-out response, do share it with us.

Our e-mail ID is atria.editor@apu.edu.in.

— Adapted from Moloy De’s Facebook page “Math Believe It or Not”.  
See: https://www.facebook.com/photo.php?fbid=10206841050456928&set=

gm.992345247471454&type=3&theater.


