Problems for the Senior School

Problem Editors: PRITHWIJIT DE & SHAILESH SHIRALI

PROBLEMS FOR SOLUTION

Problem V-1-S.1

What is the greatest possible perimeter of a right-angled triangle with integer sides, if one of the sides has length 12?

Problem V-1-S.2

Rectangle *ABCD* has sides AB = 8 and BC = 20. Let *P* be a point on *AD* such that $\angle BPC = 90^{\circ}$. If r_1 , r_2 , r_3 are the radii of the incircles of triangles *APB*, *BPC* and *CPD*, what is the value of $r_1 + r_2 + r_3$?

Problem V-1-S.3

Let *a*, *b*, *c* be such that a + b + c = 0, and let

$$P = \frac{a^2}{2a^2 + bc} + \frac{b^2}{2b^2 + ca} + \frac{c^2}{2c^2 + ab}$$

Determine the value of *P*.

Problem V-1-S.4

In acute-angled triangle *ABC*, let *D* be the foot of the altitude from *A*, and *E* be the midpoint of *BC*. Let *F* be the midpoint of *AC*. Suppose $\angle BAE = 40^\circ$. If $\angle DAE = \angle DFE$, what is the magnitude of $\angle ADF$ in degrees?

Problem V-1-S.5

Circle ω touches the circle Ω internally at *P*. The centre *O* of Ω is outside ω . Let *XY* be a diameter of

 Ω which is also tangent to ω . Assume that PY > PX. Let *PY* intersect ω at *Z*. If *YZ* = 2*PZ*, what is the magnitude of $\angle PYX$ in degrees?

SOLUTIONS OF PROBLEMS IN ISSUE-IV-3 (NOVEMBER 2015)

Solution to problem IV-3-S.1

Determine all possible integers N such that N(N-101) is the square of a positive integer.

Let d = GCD(N, N - 101). Then *d* divides N - (N - 101) = 101. Hence d = 1 or d = 101.

If d = 1, then N(N - 101) is a perfect square if and only if each of N and N - 101 is a square. Let $N = a^2$ and $N - 101 = b^2$. Then

$$(a-b)(a+b) = 101,$$

so (a - b, a + b) = (1, 101), leading to a = 51, b = 50 and $N = 51^2 = 2601$.

If d = 101, then N = 101k and N - 101 = 101(k - 1) for some positive integer k > 1. Therefore:

$$N(N-101) = (101^2)k(k-1).$$

But k(k-1) is never a square for any positive integer k > 1, because

$$(k-1)^2 < k(k-1) < k^2$$

Thus N(N - 101) is not a square when d = 101. It follows that there is just one integer value of N for which N(N - 101) is a perfect square; namely: N = 2601.

Solution to problem IV-3-S.2

Let R, S be two cubes with sides of lengths r, s, respectively, where r and s are positive integers. Show that the difference of their volumes numerically equals the difference of their surface areas if and only if r = s.

For the given condition to hold we must have

$$r^3 - s^3 = 6(r^2 - s^2). \tag{1}$$

This can be expressed as

$$s^2 = (6 - r)(r + s),$$
 (2)

which shows that r < 6. Similarly s < 6. Now observe that equation (1) can be written as

$$(6-r)^2 + (6-s)^2 + (r+s)^2 = 72.$$
 (3)

The right-hand side of relation (3) is divisible by 4. Therefore the left-hand side must be divisible by 4. The square of any positive integer is either divisible by 4, or exceeds a multiple of 4 by 1. Thus, in this case, each term on the left-hand side must be divisible by 4, which forces each term to be even. Hence, both r and s are even. If r, s are different, then r, s are 2, 4 in some order, so r + s = 6, and by equation (2),

$$s^2 = 6(6-r)$$

which is false for positive integers $r, s \in \{2, 4\}$. Thus r = s. If we know that r = s, then equation (1) is clearly true.

Solution to problem IV-3-S.3

Suppose $S = \{0, 1\}$ has the following addition and multiplication rules: 0 + 0 = 0, 0 + 1 = 1 + 0 = $1, 1 + 1 = 0, 0 \times 0 = 1 \times 0 = 0 \times 1 = 0, 1 \times$ 1 = 1. A system of polynomials is defined with coefficients in S. Show that in this system $x^3 + x + 1$ is not factorisable.

Suppose the polynomial can be factored as $(ax + b)(cx^2 + dx + e)$ where $a, b, c, d, e \in \{0, 1\}$. By equating the coefficients of $x^3, x^2, x^1, x^0 = 1$ on the two sides, we see that:

$$ac = 1$$
, $bc + ad = 0$, $bd + ae = 1$, $be = 1$.

Thus a = b = c = e = 1, which leads on substitution to 1 + d = 0 and d + 1 = 1, which contradict each other. Hence the factorisation is not possible.

Solution to problem IV-3-S.4

Consider all non-empty subsets of the set $\{1, 2, 3, ..., n\}$. For each such subset, find the product of the reciprocals of each of its elements. Denote the sum of all these products by a_n . Prove that $a_n = n$ for all positive integers n.

Observe that $a_1 = 1$ and $a_2 = 2$. Suppose $a_k = k$ for some positive integer k > 1. Then:

$$a_{k+1} = \left(1 + \frac{1}{k+1}\right)a_k + \frac{1}{k+1}$$
$$= \frac{(k+1)^2}{k+1} = k+1.$$

Thus by the principle of mathematical induction, $a_n = n$ for all natural numbers n.

Solution to problem IV-3-S.5

Show that the polynomial $x^8 - x^7 + x^2 - x + 15$ has no real zero.

Let $f(x) = x^8 - x^7 + x^2 - x + 15$. Observe that all the coefficients of f(-x) are positive. Thus f(x)does not have any real negative zero. We can write

$$f(x) = x^{7}(x-1) + x(x-1) + 15,$$

hence f(x) > 0 for $x \ge 1$. Writing f(x) as

 $f(x) = x^8 + (1 - x^7) + x^2 + (1 - x) + 13,$

we see that f(x) > 0 when $0 \le x \le 1$. Thus f(x) does not have any real positive zero.