Two Problems

 $\mathcal{C} \otimes \mathcal{M} \alpha \mathcal{C}$

We present as earlier a small collection of problems, followed by their solutions. We state the problems first so you have a chance to try them out on your own.

PROBLEMS

Two circles Γ and ω touch internally at *P*. A chord *AB* of the larger circle Γ touches the smaller circle ω at *Q*. Show that *PQ* bisects ∠*APB*. What might be a meaningful generalisation of this result? (See Figure 1.)

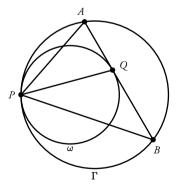
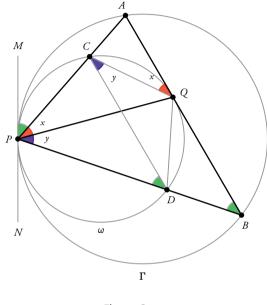


Figure 1. Two tangent circles

2. Show that the function $f(x, y) = \frac{1}{2} ((x + y)^2 + x + 3y)$ maps $\mathbb{N}_0 \times \mathbb{N}_0$ to \mathbb{N}_0 bijectively. (Here \mathbb{N}_0 refers to the set of all possible non-negative integers. So the problem asks us to show that as *x* and *y* take all possible non-negative integral values, f(x, y) takes all possible non-negative integral values, with no repetition.)

SOLUTIONS

Problem 1. Two circles Γ and ω touch internally at *P*. A chord AB of the larger circle Γ touches the smaller circle ω at *Q*. Show that PQ bisects $\measuredangle APB$. What might be a meaningful generalisation of this result?



Solution. Let *C* be the point where *PA* intersects ω again, and let *D* be the point where *PB* intersects ω again (see Figure 2). Join *CQ*, *DQ*, *CD* as shown. The solution will now follow from old-fashioned 'angle chasing.' The two angles marked *y* are equal ("angles in the same segment of a circle"). So are the two angles marked *x* (this follows from the well-known theorem about the angle between a tangent to a circle and a chord at the point of contact).

Next we show that *CD* is parallel to *AB*. Here is one way of seeing why. Draw the tangent *MN* at *P* to ω ; it is also the tangent at *P* to Γ . Using the theorem just quoted above, we see that $\angle APM$ is equal to $\angle CDP$ as well as to $\angle ABD$. It follows that $\angle CDP = \angle ABP$, and hence that *CD* || *AB*. From the parallelism, it follows that $\angle AQC =$ $\angle DCQ$, i.e., x = y. Hence *PQ* bisects $\angle APB$.

Another way of seeing why $CD \parallel AB$ uses the idea of a geometrical transformation, in this case a

dilation centred at *P*, with scale factor *PA* : *PC*. The dilation maps ω to Γ and hence *C* to *A* and *D* to *B*; this implies that $AB \parallel CD$.

We have been asked to suggest a meaningful generalisation of the above result. Here is one which seems particularly attractive:

Two circles Γ and ω touch internally at P. A chord AB of the larger circle Γ cuts ω at points Q and R. Show that $\angle APQ = \angle BPR$. (See Figure 3.)

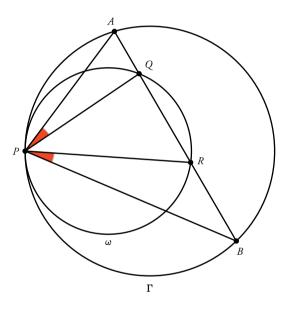


Figure 3. Generalisation of the earlier result

Do you see how this is a generalisation of the earlier result? See if you can find the proof for yourself!

Problem 2. Show that the function $f(x, y) = \frac{1}{2} ((x + y)^2 + x + 3y)$ maps $\mathbb{N}_0 \times \mathbb{N}_0$ to \mathbb{N}_0 bijectively. (\mathbb{N}_0 refers to the set of all non-negative integers.)

Solution. There are actually two parts to this question. Firstly, we must show that the range of f is the whole of the co-domain; i.e., for every non-negative integer n, there exists a pair x, y of non-negative integers such that f(x, y) = n. Secondly, we must show that two different pairs of

non-negative integers cannot be mapped by f to the same image point. Only if we show both these parts can we claim that f is a bijective map. What we shall do now is to establish these two parts separately.

The expression for f can be written in the following form:

$$f(x,y) = \frac{1}{2} ((x+y)^2 + x + y) + y$$
$$= \frac{(x+y)(x+y+1)}{2} + y.$$

Let x + y = k; then $f(x, y) = T_k + y$, where T_k is the *k*-th triangular number. Since $y \le x + y$, we must have $y \le k$. So what we have to prove is the following: if *n* is any non-negative integer, then we can find a unique pair of integers *k*, *y* such that $0 \le y \le k$ and $n = T_k + y$.

We first show that such a pair of non-negative integers can always be found; i.e., every non-negative integer lies in the range of f. Our proof is algorithmic: given n, we show how to find x, y such that f(x, y) = n. All we do is to find the largest non-negative integer k such that $T_k \le n$; then we let $y = n - T_k$ and x = k - y, and with this choice we have f(x, y) = n. An example will illustrate the mechanism. Let n = 50; since $T_9 <$ $50 < T_{10}$ and $50 - T_9 = 5$, we get y = 5 and

$$x = 9 - 5 = 4$$
. Check:
 $f(4,5) = \frac{(4+5)^2 + 4 + 15}{2} = \frac{81 + 19}{2} = 50.$

To complete this part of the proof, we must show that $y \le k$. But this is clear, since $T_{k+1} - T_k = k + 1$, which implies that if $T_k \le n < T_{k+1}$, then $n - T_k \le k$.

Now for the uniqueness part, we must show that two different pairs of non-negative integers cannot map to the same value. For this it suffices to show the following: if a, b and c, d are pairs of integers such that

 $0 \le b \le a, \qquad 0 \le d \le c, \qquad T_a + b = T_c + d,$

then (a, b) = (c, d). To see why this is so, we treat a, c as fixed, and b, d as variables, with $0 \le b \le a$ and $0 \le d \le c$. If a = c and $b \ne d$, then clearly $T_a + b \ne T_c + d$. So we may assume that $a \ne c$. Without loss of generality, suppose that a < c. The range of values taken by $T_a + b$ for $0 \le b \le a$ is the set

$$\{T_a, T_a+1, T_a+2, \ldots, T_a+a\},\$$

and the range of values taken by $T_c + d$ for $0 \le d \le c$ is the set

$$\{T_c, T_c + 1, T_c + 2, \ldots, T_c + c\},\$$

and these sets are clearly disjoint, because

$$T_a + a < T_{a+1} \leq T_c.$$

The stated claim follows.