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At some point students begin to show interest in the origins 
of mathematical ideas: How were logarithms discovered? 
Who was the first person to compute the log tables? 

When were quadratic equations first used, and how were they 
solved? Can equations of a higher order be solved in a similar 
way? Why are representations of complex numbers on a plane 
called Argand diagrams? Ian Stewart’s book Taming the Infinite: 
The Story of Mathematics from the First Numbers to Chaos Theory 
throws light on questions like these. It is an attempt at mapping 
the major themes in mathematics through a historical perspective. 
This compact book of less than 400 pages covers the major 
topics in Mathematics and is accessible to students in secondary 
school. The latter part of the book gives a flavour of some areas 
of college mathematics. An underlying theme of the book is that 
the modern world owes a great debt to advances in Mathematics, 
and mention is made of some of the applications of Mathematics. 
Brief biographical sketches of the major players are given, though 
there are some odd omissions like Euler and Leibniz. There are 
boxed items, some with intriguing titles: What We Don’t Know 
About Primes, What Trigonometry Did For Us. Though the 
book is compact, it is ambitious in its scope; but appears thin 
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non-negative integers cannot be mapped by f to
the same image point. Only if we show both these
parts can we claim that f is a bijective map. What
we shall do now is to establish these two parts
separately.

The expression for f can be written in the
following form:

f(x, y) =
1
2
(
(x+ y)2 + x+ y

)
+ y

=
(x+ y)(x+ y+ 1)

2
+ y.

Let x+ y = k; then f(x, y) = Tk + y, where Tk is
the k-th triangular number. Since y ≤ x+ y, we
must have y ≤ k. So what we have to prove is the
following: if n is any non-negative integer, then
we can find a unique pair of integers k, y such that
0 ≤ y ≤ k and n = Tk + y.

We first show that such a pair of non-negative
integers can always be found; i.e., every
non-negative integer lies in the range of f. Our
proof is algorithmic: given n, we show how to find
x, y such that f(x, y) = n. All we do is to find the
largest non-negative integer k such that Tk ≤ n;
then we let y = n− Tk and x = k− y, and with
this choice we have f(x, y) = n. An example will
illustrate the mechanism. Let n = 50; since T9 <
50 < T10 and 50− T9 = 5, we get y = 5 and

x = 9− 5 = 4. Check:

f(4, 5) =
(4+ 5)2 + 4+ 15

2
=

81+ 19
2

= 50.

To complete this part of the proof, we must show
that y ≤ k. But this is clear, since Tk+1 − Tk =
k+ 1, which implies that if Tk ≤ n < Tk+1, then
n− Tk ≤ k.

Now for the uniqueness part, we must show that
two different pairs of non-negative integers cannot
map to the same value. For this it suffices to show
the following: if a, b and c, d are pairs of integers
such that

0 ≤ b ≤ a, 0 ≤ d ≤ c, Ta+b = Tc+d,

then (a, b) = (c, d). To see why this is so, we treat
a, c as fixed, and b, d as variables, with 0 ≤ b ≤ a
and 0 ≤ d ≤ c. If a = c and b ̸= d, then clearly
Ta + b ̸= Tc + d. So we may assume that a ̸= c.
Without loss of generality, suppose that a < c.
The range of values taken by Ta + b for 0 ≤ b ≤
a is the set

{Ta,Ta + 1,Ta + 2, . . . ,Ta + a} ,
and the range of values taken by Tc + d for 0 ≤
d ≤ c is the set

{Tc,Tc + 1,Tc + 2, . . . ,Tc + c} ,
and these sets are clearly disjoint, because

Ta + a < Ta+1 ≤ Tc.

The stated claim follows. �
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in some places as a result. A major drawback is 
that the book does not give much space to non-
European strands: Aryabhata, Brahmagupta, 
Mahavira and Bhaskaracharya are given less than 
a couple of pages, and Madhava and the Chinese 
mathematicians do not even figure in the book.

Ian Stewart has tried to order the book 
thematically and chronologically, but this brings 
in a few anomalies. Chapter I on Numbers and 
Chapter III on Number Systems should sit 
together, but the chronology results in a chapter 
on Geometry in-between. The book starts by 
looking at the way numbers developed in two 
early civilizations – Egyptian and Babylonian.
The Babylonians were able to accurately predict 
celestial events such as solar eclipses and the 
movements of planets. However, there is evidence 
that human beings were interested in counting 
much before these civilizations emerged. Two 
bones found in Africa, the Lebombo bone and 
Ishango bone, with tally marks on them, have 
got mathematicians speculating on their possible 
origins. Chapter III picks up the story with the 
background to our present number system which 
originated in India. A mention is made of some 
Indian Mathematicians during this period, and 
the legend of how Bhaskaracharya named one of 
his books (Lilavati) is nicely narrated. This section 
would have benefited from greater detail; those 
interested should refer to The Crest of the Peacock 
(reviewed in an earlier issue). Stewart gives a sketch 
of the life of Leonardo of Pisa, better known as 
Fibonacci, who introduced the Indian numeration 
system to Europe through his book Liber Abbaci.

Chapter II on Geometry begins with the 
Babylonians, who were familiar with what is now 
known as the Pythagorean Theorem. Mention is 
made of Archimedes in the context of the problem 
of finding good rational approximations to pi, and 
of finding formulas for the volume and surface 
area of a sphere. There is a biography of Hypatia, 
the woman mathematician who met a tragic end 
at the hands of a Christian mob in Alexandria. 
Euclid’s Elements, and the concepts of theorem, 
proof, postulate and axiom are explained lucidly 
with examples; it will help the readers in putting 
the school geometry in context.

Chapter IV looks at the development of Algebra. 
Some readers will find it surprising that quadratic 
equations were being solved by the Babylonians 
in much the same way we do today. Stewart 
speculates that the Babylonians may have come 
upon this solution by depicting the equation 
pictorially – a form which students will find 
appealing. Next, Stewart takes us through a tour 
of attempts to solve the cubic equation, starting 
with attempts by the Greeks using the conics 
sections; much later, the same approach was 
formalised by the Persian Omar Khayyam, author 
of the poem Rubiyat. In the middle of the 16th 
century, an algebraic solution was found by Italian 
mathematicians. Readers may be surprised to find 
that many symbols in common use today were not 
in use at that time. For example, the ‘+’ and ‘-’ 
symbols appeared only around the 16th century. 
The ‘equals to’ sign was invented in 1557 by the 
English mathematician Robert Recorde, who said 
that he could not think of any two things more 
alike than a pair of parallel lines!

Ian Stewart gives the following example from an 
algebra book written in the 16th century (Ars 
Magna):

qdrat actur 4 rebus p: 32.

In modern notation this would be written as:

x2 = 4 x + 32.

Chapter V looks at how trigonometry and 
logarithms developed. Trigonometrical tables 
were developed in different ways in many places 
over the years; they arose from the needs of 
astronomers. The first trigonometric tables were 
derived by Hipparchus around 150 BC. In 
India, Aryabhata and Brahmagupta developed 
trigonometric concepts using the notion of the 
half-chord in a circle. The Arab mathematician 
Nasir-Uddin combined trigonometry in the 
sphere and the plane. This is one area where 
the mathematics done by the ancients is more 
complex than that learnt in school today. Plane 
trigonometry as currently taught in schools 
developed around the 15th century. On the 
other hand, logarithms developed from the 
need to make calculations easy; however, this 
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aspect of logarithms has now become obsolete. 
The enormous effort put in by John Napier in 
constructing the logarithm tables eased the work 
of mathematicians and scientists. The number e 
which is closely related to logarithms makes an 
appearance here, though no one is credited with its 
discovery.

Today we take the idea of latitude and longitude 
for granted, but it took a long time for such ideas 
and for the notion of coordinate geometry to 
develop. In the next chapter, Stewart begins with 
Fermat who in the 17th century was the first to 
try and relate a geometric curve to an equation 
and to represent it on an oblique coordinate grid. 
The modern rectangular coordinate system was 
introduced by Descartes in an appendix to his 
book Discourse de la Methode; he showed how 
geometric curves can be represented using algebraic 
equations. Fermat extended the coordinate system 
to three dimensions. Jacob Bernoulli developed the 
idea of polar coordinates, where position is defined 
using an angle and a radial distance. The chapter 
ends by looking at some applications of coordinate 
geometry, including the use of GPS which is 
ubiquitous in today’s world. 

Chapter VII looks at Number Theory, a topic 
dealt with superficially in school mathematics. 
The early mathematicians mentioned here are 
Euclid and Diophantus; the absence of Asian 
mathematicians is glaring. Euclid proved many 
properties of primes; for example, that every 
number can be expressed as a product of prime 
numbers in a unique way. Stewart illustrates this 
with an example in a note, Why Uniqueness Of 
Primes Is Not Obvious.

The next big idea was the invention of Calculus, 
and it had an enormous impact on the 
development of mathematics. It seems to have 
arisen out of many unrelated investigations: 
instantaneous change in velocity, finding maxima 
and minima, finding tangents to curves, finding 
areas of planar shapes. The breakthrough was 
made by Leibniz, who was the first to realise 
that finding tangents to a curve was the inverse 
operation to finding area under the curve. He 
was the one who gave us nearly all the symbols 
we now associate with calculus. He published 

his work on calculus in 1684, though not many 
understood the significance of his work at the 
time. Newton had been developing his ideas 
on calculus at nearly the same time, but using 
different symbols; he published his ideas in 1687. 
Stewart gives a vivid description of the controversy 
that erupted regarding who was the “first to 
discover calculus”, and the sizeable rift it caused 
between European and British mathematicians. 
The development of the planetary laws of motions, 
which can be regarded as a prime mover behind 
the development of calculus, is explained in detail, 
from Ptolemy’s system of epicycles based around 
a stationary earth, to the Copernican sun-centred 
solar system, to the observations of Brahe and 
Kepler which allowed Kepler to come up with his 
laws of planetary motion; all these together with 
Galileo’s work laid the foundations for calculus.

Calculus in its early days lacked a clear logical 
foundation, as the idea of limits had not been 
developed; that concept would take another 
century to develop. Leibniz used the term 
infinitesimal to describe a number close to zero, 
and Newton came up with the term fluxion. Since 
calculus bestowed such power in the hands of 
its users, most mathematicians ignored this lack 
of rigour. A significant exception was Bishop 
Berkeley who pointed out that it was meaningless 
to divide by a quantity that is later set equal to 
zero. How this conundrum was later resolved is 
described in chapter XI.

The next chapter looks at a topic familiar to 
students: Complex Numbers. Stewart explains 
that the early mathematicians ignored answers 
involving the root of a negative number. The first 
recorded manipulation of imaginary numbers is by 
Rafael Bombelli in his book L’algebra (1557). In 
the context of finding cube roots, he came across 
imaginary numbers and operated on them as if 
they were ordinary numbers. In 1673, John Wallis 
invented a way to represent imaginary numbers 
on a plane. Wallis’s work was explained more 
clearly by Caspar Wessel in 1797, but his work 
went by unnoticed. The French mathematician 
Jean Robert Argand came up with the same idea 
independently in 1806; today we call his way of 
representing complex numbers Argand diagrams. 
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This was the start of the development of the field 
of complex analysis; ultimately it led to Cauchy’s 
theorem which extends calculus to the complex 
plane; Gauss had come upon the same idea earlier 
but had not published it.

The rest of the book – apart from the chapter on 
Probability and Statistics – is devoted to topics 
that students study in college. Stewart has made 
a great effort at making the key ideas accessible 
to high school students. There are three chapters 
on non-Euclidean geometry. One such geometry 
which emerged from the work of the Renaissance 
artists is projective geometry. The search for a proof 
of Euclid’s fifth postulate ultimately resulted in 
the development of a different kind of geometry. 
Gauss was convinced from an early stage that it 
ought to be possible to come up with a logically 
consistent system of non-Euclidean geometry (the 
geometry of curved space), but he was fearful of 
publishing his work as he felt that people were 
too conditioned to the geometry of Euclid and 
would ridicule his work. The chapter Rubber 
Sheet Geometry considers operations not studied 
in traditional geometry. For example, a shape 
like a square can be bent, stretched and twisted 
into a triangle or circle; likewise a coffee cup 
can be moulded into a doughnut shape. These 
objects which can be moulded into each other 
can be regarded as congruent, the only invariant 
aspect being connectedness. Stewart mentions the 
Königsberg bridges problem and discusses notions 
like the Möbius band and the Riemann Sphere.

The chapter titled The Shape of Logic deals with 
matters which are central to mathematics; it looks 
at how mathematicians started questioning the 
very foundation of mathematics. Dedekind was 
unsettled by the fact that obvious properties of 
real numbers had not been proved, for example, 
√2×√3=√6, and he expressed his thoughts in 
a book he published in 1872. In another book 
in 1888, he exposed gaps in the foundations of 
the system of real numbers and proposed a new 
approach: Dedekind cuts. He found a way of 
defining the properties of real numbers solely 
in terms of rational numbers. This led to the 
question: How do we know that the properties 
for numbers hold true? In 1889, Giuseppe 

Peano proved the basic operations of arithmetic 
by creating a list of axioms for whole numbers, 
the most important ones being that there exists 
a whole number, 0, and each number n has a 
successor s(n), which is 1 more than the previous 
one. As mathematicians grappled with these ideas, 
they began to explore the meaning of ‘number’. 
In this context, sets were introduced as a 1-1 
correspondence with numbers by Gottlob Frege. 
Unfortunately for Frege, his work was rendered 
worthless by George Cantor’s work, and Bertrand 
Russell pointed out a paradox in his work just as 
his book was being published. Russell tried to fill 
the gap in Frege’s work with his theory of types, but 
this was equally contentious. In his three-volume 
book, the definition of 2 comes at the end of 
volume I, and 1 + 1 = 2 is proved on page 86 of 
volume II! There were more strange discoveries 
on numbers with Cantor’s theory of transfinite 
numbers and different sizes of infinity. The chapter 
ends with Hilbert’s ambitious project to put the 
whole of mathematics on a sound footing, but this 
was ruined by Gödel’s shattering discoveries.

The final chapter of the book is on Chaos Theory, 
one of the new branches of Mathematics which 
challenges the deterministic, clockwork universe 
of Newton. Its beginnings were in 1886 when 
King Oscar II of Sweden offered a prize to solve 
the problem of stability of the solar system. Henri 
Poincaré, working on the three-body problem, 
realised the complexity of the problem; his work 
led to the development of chaos theory. In 1926, 
a Dutch engineer while simulating the heart 
using an electronic circuit realised that under 
certain conditions the resulting oscillations were 
irregular. However, it was another forty years 
before chaos theory began to be seriously studied. 
Meteorologist Edward Lorenz set out to model 
the atmospheric convection by approximating 
the complex equations with much simpler ones. 
He discovered that if the initial conditions varied 
even slightly, the differences became amplified 
and the final solutions looked very different 
from each other; this came to be known as the 
‘butterfly effect’. Parallel to these developments, a 
group of mathematicians towards the beginning 
of the 20th century were coming up with bizarre 
shapes: a curve that fills an entire space (Peano 
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and Hilbert), a curve that crosses itself at every 
point (Sierpinski), a curve of infinite length that 
encloses a finite area (Koch). In the 1960s, Benoit 
Mandelbrot realised that these monstrous shapes 
reflected irregularities in nature and came up with 
the notion of a fractal. Mandelbrot was able to 
show many examples of fractals in nature, and in 
unexpected contexts like stock market prices.

Ian Stewart’s book is an excellent resource for 
teachers who want to inspire their students; it can 

be equally enjoyed by students at the +2 level. 
It need not be read in a linear way. One can dip 
into any part of the book and make sense of it 
without having read earlier portions. There are 
many applications interspersed through the book. 
It is also a good read for those who wish to develop 
a coherent picture of modern mathematics as a 
whole, in terms of how the fundamental ideas 
relate to each other.

TANUJ SHAH teaches Mathematics in Rishi Valley School. He has a deep passion for making mathematics
accessible and interesting for all and has developed hands-on self learning-modules for the Junior School. Tanuj
Shah did his teacher training at Nottingham University and taught in various schools in England before joining
Rishi Valley School. He may be contacted at tanuj@rishivalley.org.
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  1:  7,14,28,56, -----, 224

  3:  Circumference of a circle with a radius of 28 units

  8:  Number of days in February of this year

  9:  2D times 22D plus 10

10:  12.5% of 512

13:  1, 2, 5, 26, -----, 458330

14:  Exterior angle of an equilateral triangle 

17:  The second two digit prime

18:  15D minus 6D plus 1

20:  14877 divided by 783

23:  Average of 573, 439, 811, 1113

24:  One hundredth of the number of seconds in a day

CLUES DOWN

  2:  Difference of square roots of 2601 and 1369

  4:  A factor of 119 in reverse

  5:  17A times 10A minus 4

  6:  One third of the largest two digit number  

  7:  Three sides of a right angle triangle in ascending order

11:  1A multiplied by 7 minus 10

12:  Area of a rectangle of sides 26 and 28

15:  Two raised to 9

16:  Largest three digit number

19:  Largest two digit perfect square

21:  Number of weeks in a year plus 1

22:  First of three consecutive numbers totaling 51
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many applications interspersed through the book. 
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