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How to
Prove It
In this episode of “How To Prove It”, we prove a striking
theorem first discovered by Ptolemy. We then discuss some
nice applications of the theorem.

In this article we examine a famous and important result in
geometry called Ptolemy’s Theorem. Here is its statement (see
Figure 1):

Theorem 1 (Ptolemy of Alexandria). If ABCD is a cyclic
quadrilateral, then we have the following equality:

AB · CD+ BC · AD = AC · BD. (1)

In words: “The sum of the products of opposite pairs of sides of a
cyclic quadrilateral is equal to the product of the diagonals.”
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Figure 1. Cyclic quadrilateral and Ptolemy's theorem
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Figure 3. Another pair of similar triangles

You will agree that this is a very elegant proof (it is the proof given by Ptolemy), but it would not be easy
to find it on one’s own.

It turns out that Ptolemy’s theorem can be proved in many different ways. Of particular interest are the
following: (i) a proof using complex numbers, (ii) a proof using vectors, (iii) a proof based on a geometrical
transformation called ‘inversion’. We will have occasion to study these different ways in later articles.

A few elegant applications of Ptolemy’s theorem

We showcase below three pleasing applications of the theorem proved above. The first one is an elegant
result relating to an equilateral triangle.

Theorem 2. Let ABC be an equilateral triangle, and let P be any point on the circumcircle of the triangle.
Then the largest of the distances PA, PB, PC is equal to the sum of the other two distances.

The theorem is illustrated in Figure 4. Note that P is located on the minor arc BC, i.e., it lies between the
points B and C. The theorem now asserts that PA = PB+ PC.

The proof is simplicity itself. Consider the cyclic quadrilateral PBAC. Apply Ptolemy’s theorem to it; we
get:

PA · BC = PB · AC+ PC · AB. (6)
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Figure 4. Application of Ptolemy's theorem to an equilateral triangle
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A ‘pure geometry’ proof. To prove the theorem presents a challenge. The difficulty lies in the fact that
neither side of the equality AB · CD+ AD · BC = AC · BD seems to mean anything. Terms like AB · CD
and AD · BC suggest areas; but of what? There is nothing in the figure that yields a clue. So we try a
different approach. We write the equality to be proved as

AB · CD
BD

+
BC · AD
BD

= AC. (2)

Have we made progress by writing it this way? Perhaps. Now the equality to be proved is a relation
between lengths. Can we find or construct two segments whose lengths together yield the length of AC?

The expressions on the left (AB · CD/BD and BC · AD/BD) suggest that we must look for or construct
suitable pairs of similar triangles. Indeed, the form AB · CD/BD suggests that we should construct a
triangle similar to △ABD, and moreover that this (yet to be constructed) triangle should have CD for a
side. Noting that ̸ ABD = ̸ ACD we ask: what if we locate a point E on AC such that △ABD ∼ △ECD?
Then we would have AB/BD = EC/CD, giving EC = AB · CD/BD; just what we want! Now we have a
clue on how to proceed. Figure 2 shows the construction.

Locate a point E on diagonal AC such that ̸ CDE = ̸ ADB (the two angles are marked with a bullet in
Figure 2). Now consider △CDE and △ADB. Since ̸ ECD = ̸ ABD by the angle property of a circle, and
̸ CDE = ̸ ADB by design, we have △CDE ∼ △ADB. Hence:

EC
CD

=
AB
BD

, ∴ EC =
AB · CD
BD

. (3)

With reference to the same figure (redrawn as Figure 3) we also have △DAE ∼ △DBC, because
̸ DAE = ̸ DBC and ̸ ADE = ̸ BDC.

Hence:
BC
BD

=
AE
AD

, ∴ AE =
BC · AD
BD

. (4)

Adding (3) and (4) we get, since AE+ EC = AC:

AC =
AB · CD
BD

+
BC · AD
BD

, ∴ AC · BD = AB · CD+ BC · AD, (5)

as was to be proved. �

D

A

B C

E

•
•

× ×

Locate point E on diagonal AC
such that ̸ CDE = ̸ ADB.
Then △CDE ∼ △ADB.

Figure 2. Construction of an appropriate point E on diagonal AC
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Figure 6. Application of Ptolemy's theorem to a trig inequality

Our third result is a trigonometric inequality which would seem difficult to prove using purely geometric
methods. We shall show that for any acute angle x,

sin x+ cos x ≤
√

2. (11)

Figure 6 shows a circle with unit radius, a diameter BC, an isosceles right-angled triangle ABC with BC as
hypotenuse, and a right-angled triangle DBC with BC as hypotenuse and with one acute angle equal to x;
vertices A and D lie on opposite sides of BC.

We apply Ptolemy’s theorem to the quadrilateral ABDC:

AB · CD+ AC · BD = AD · BC.
Since AB = AC =

√
2, BD = 2 cos x, CD = 2 sin x, BC = 2, we get:

2
√

2 sin x+ 2
√

2 cos x = 2AD.

Now note that AD is a chord of the circle and so does not exceed in length the diameter of the circle;
hence AD ≤ 2. This yields 2

√
2 sin x+ 2

√
2 cos x ≤ 4, and therefore:

sin x+ cos x ≤
√

2, (12)

as claimed. �
In the next episode of “How To Prove It” we shall showcase a few more applications of Ptolemy’s theorem,
and also prove an inequality version of the theorem.
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But AB = BC = CA. The equal factor present in all three products in (6) can be cancelled, and we are left
with the desired relation, PA = PB+ PC. �

Remark. Theorem 2 can also be proved using the following trigonometric identity: for all angles θ
(measured in degrees),

sin(60 − θ) + sin θ = sin(60 + θ). (7)

The next result that we describe refers to a regular pentagon. If you examine such a pentagon, you will
notice that it has five diagonals all of which have the same length.

Theorem 3. Given a regular pentagon with side a, let its diagonals have length d. Then we have the following
relation:

a2 + ad = d 2. (8)

In Figure 5, ABCDE is a regular pentagon; its sides have length a and its diagonals have length d. We
apply Ptolemy’s theorem to the inscribed quadrilateral BCDE; we get:

BC · DE+ BE · CD = BD · CE. (9)

That is, a2 + ad = d2, as required. �
If we write x = d/a (i.e., x is the ratio of the diagonal to the side of a regular pentagon), then the above
equation yields: x2 = x+ 1. Solving this we get:

x =
1 ±

√
5

2
.

The negative sign clearly cannot hold, since x is positive; hence we have:

x =
√

5 + 1
2

. (10)

So the ratio of the diagonal to the side of a regular pentagon is the Golden Ratio!
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Figure 5. Application of Ptolemy's theorem to a regular pentagon
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