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SATVIK U. KAUSHIK

A Note on 
Armstrong Numbers

In this note we provide a way for identifying
Armstrong numbers. We also discuss their
generalizations.

Introduction
In recreational number theory, an Armstrong number
(named after Michael F. Armstrong) of the first kind is a
number that is the sum of its own digits each raised to the
power of the number of digits. For example,
153 = 13 + 53 + 33. In this note we study three-digit
Armstrong numbers of the first kind and their patterns in the
general case (Armstrong numbers of the second kind) and we
also list all the n-digit Armstrong numbers of the first kind.

Theorem 1. There are only four three-digit Armstrong
numbers of the first kind. They are 153, 370, 371 and
407.

Proof. Consider a three-digit number N = 100A+ 10B+ C
where A,B,C ∈ {0, 1, 2, . . . .9} and A ̸= 0. Assuming that
it is an Armstrong number, we shall find the possible values
of A,B,C.

From the definition of an Armstrong number, it follows that
A 3 + B 3 + C 3 = 100A+ 10B+ C. We consider the
different possible values of A.

Suppose that A = 1. Then B 3 + C 3 = 10B+ C+ 99. The
number on the right side is at least 99 and at most 198.
Hence B < 6 and C < 6. We can check that either
B = C = 4, or one of B or C is 5. (The other possibilities
clearly do not work out.)
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Clearly (B,C) = (4, 4) does not satisfy B 3 + C 3 = 10B+ C+ 99.

Hence one of B or C is 5. If B = 5, then C 3 − C = 24, so C = 3, hence the number is 153.

If C = 5, then B 3 + 125 = 10B+ 104, so B 3 − 10B = −21, but this does not yield any positive integer
solution for B.

Hence the first three-digit Armstrong number is 153.

That is, 13 + 53 + 33 = 1+ 125+ 27 = 153.

Next, suppose that A = 2. Then B 3 + C 3 = 10B+ C+ 192. The number on the right side is at least 192
and at most 291, hence either B = C = 5, or one of B or C is 6.

In neither case do we find any such B and C which fits the equation. So there is no three-digit Armstrong
number starting with 2.

Next, suppose that A = 3; then B 3 + C 3 = 10B+ C+ 273. The number on the right side is at least 273
and at most 372, which implies (B,C) = (5, 6) or (6, 5) or B or C is 7. It is easy to check that the
possibilities (B,C) = (5, 6) and (B,C) = (6, 5) do not work. Now consider the possibility C = 7; in this
case B 3 = 10B− 63, but this gives no such B. Next, consider B = 7; in this case we have C 3 = C, which
gives C = 0 or C = 1. Hence the possible numbers are 370, 371. Equality works out for both these
numbers.

That is, 33 + 73 + 03 = 27+ 343+ 0 = 370 and 33 + 73 + 13 = 27+ 343+ 1 = 371.

Now let us proceed with the case A = 4. In this case we have B 3 +C 3 = 10B+C+ 336. The number on
the right side is at least 336 and at most 435, which implies (B,C) = (5, 6) or (6, 5) or B or C is 7. It is
easy to check that no solution exists with either B = 7 or (B,C) = (5, 6) or (6, 5). Hence we take C = 7,
which gives B 3 = 10B. This yields B = 0. Hence the number is 407. This fits the requirement.

That is, 43 + 03 + 73 = 64+ 0+ 343 = 407.

If we experiment with the possibilities A ∈ {5, 6, 7, . . . ., 9}, we do not find any solutions for B and C.

Hence there are only four three-digit Armstrong numbers of the first kind; they are 153, 370, 371, 407.

Note. In [1], the author Dr. MOLOY DE gives a brief description on Armstrong numbers as follows:

“Armstrong numbers of first kind are base dependent and they are certainly rare. They cannot have more
than 60 digits in base 10, because for n > 60, n9n < 10n−1. Since there is an upper limit to their size, it
is theoretically possible to find all of them, given sufficient computer time. However, 1060 is an
unimaginably huge number, so such a ‘brute force’ approach would be unwise. Luckily, D. Winter proved
in 1985 that there are exactly 88 base-10 Armstrong numbers of first kind, and they must have 1, 3, 4, 5,
6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38 or 39 digits.
Of course, the one-digit Armstrong numbers of first kind are somewhat trivial since clearly 11 = 1, 21 = 2
etc. The Armstrong numbers of first kind up to 10 digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407,
1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315,
24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, and
4679307774. The largest Armstrong number of first kind (in base 10) is the 39-digit beast:
115132219018763992565095597973971522401”.

The following table gives a list of all n-digit Armstrong numbers of the first kind [2], [3].
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No. Armstrong Numbers of first kind
1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3 153, 370, 371, 407
4 1634, 8208, 9474
5 54748, 92727, 93084
6 548834
7 1741725, 4210818, 9800817, 9926315
8 24678050, 24678051, 88593477
9 146511208, 472335975, 534494836, 912985153
10 4679307774, 32164049650, 32164049651, 40028394225, 42678290603,

44708635679, 49388550606, 82693916578,
11 94204591914
14 28116440335967
16 4338281769391370, 4338281769391371
17 21897142587612075, 35641594208964132, 35875699062250035
19 1517841543307505039, 3289582984443187032, 4498128791164624869,

4929273885928088826
20 63105425988599693916
21 128468643043731391252, 449177399146038697307
23 21887696841122916288858, 27879694893054074471405,

27907865009977052567814, 28361281321319229463398,
35452590104031691935943

24 174088005938065293023722, 188451485447897896036875,
239313664430041569350093

25 1550475334214501539088894, 1553242162893771850669378,
3706907995955475988644380, 3706907995955475988644381,
4422095118095899619457938

27 121204998563613372405438066, 121270696006801314328439376,
128851796696487777842012787, 174650464499531377631639254,
177265453171792792366489765

29 14607640612971980372614873089, 19008174136254279995012734740,
19008174136254279995012734741, 23866716435523975980390369295

31 1145037275765491025924292050346, 1927890457142960697580636236639,
2309092682616190307509695338915

32 17333509997782249308725103962772
33 186709961001538790100634132976990,

186709961001538790100634132976991
34 1122763285329372541592822900204593
35 12639369517103790328947807201478392,

12679937780272278566303885594196922
37 1219167219625434121569735803609966019
38 12815792078366059955099770545296129367
39 115132219018763992565095597973971522400,

115132219018763992565095597973971522401
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Generalisations of Armstrong numbers
Now we discuss some generalizations of Armstrong numbers. In Theorem 1 we discussed n-digit
Armstrong numbers of the first kind. Now we discuss the Armstrong numbers of second kind. Such a
number has the property that it “is equal to the sum of the cubes of numbers composed of two successive
digits or three successive digits or four successive digits and so on of the number.” For example:

153 = 13 + 53 + 33 (Armstrong number of first kind);

165033 = 163 + 503 + 333 (Armstrong number of second kind);

166500333 = 1663 + 5003 + 3333 (Armstrong number of second kind);

166650003333 = 16663 + 50003 + 33333 (Armstrong number of second kind).

First we prove the example stated above, then we explore these numbers and their generalizations.

Theorem 2.
1666…3 + 5000…3 + 3333…3 = 1666…6 5000…0 3333…3,

where the numbers of 6’s, 3’s and 0’s are the same in the three numbers on the left side.

Proof. Here 1 3 + 53 + 33 = 1+ 125+ 27 = 153, 16 3 + 503 + 333 = 165033. Here we can see a
pattern among the results. To prove the pattern for all A,B,C, take A,B,C in terms of variable “n” such
that we can say

n A B C ABC

153 = 1(102) + 5(101) + 3(100)

=

(
101 − 4

6

)
(102(1)) +

(
101

2

)
(101(1))

1 1 =
101 − 4

6
5 =

101

2
3 =

101 − 1
3

+

(
101 − 1

3

)
(100(1))

165033 = 16(104) + 50(102) + 33(100)

=

(
102 − 4

6

)
(102(2)) +

(
102

2

)
(101(2))

2 16 =
102 − 4

6
50 =

102

2
33 =

102 − 1
3

+

(
102 − 1

3

)
(100(2))

166500333 = 166(106) + 500(103)

+333(100) =
(
103 − 4

6

)
(102(3))

3 166 =
103 − 4

6
500 =

103

2
333 =

103 − 1
3

+

(
103

2

)
(101(3)) +

(
103 − 1

3

)
(100(3))

166650003333 = 1666(108) + 5000(104)

+3333(100) =
(
104 − 4

6

)
(102(4))

4 1666 =
104 − 4

6
5000 =

104

2
3333 =

104 − 1
3

+

(
104

2

)
(101(4)) +

(
104 − 1

3

)
(100(4))
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A =
10n − 4

6
, B =

10n

2
and C =

10n − 1
3

.

Hence

LHS = A 3 + B 3 + C 3 =

(
10n − 4

6

) 3

+

(
10n

2

) 3

+

(
10n − 1

3

) 3

=
103n − 102n + 2.10n − 2.100

6
,

RHS = ABC =

(
10n − 4

6

)
(102n)+

(
10n

2

)
(10n)+

(
10n − 1

3

)
(100) =

103n − 102n + 2.10n − 2.100

6
.

So A 3 + B 3 + C 3 = 100A+ 10B+ C where A =
10n − 4

6
, B =

10n

2
and C =

10n − 1
3

.

Hence
1666…3 + 5000…3 + 3333…3 = 1666…6 5000…0 3333…3.

Theorem 3. There exist Armstrong numbers of the second kind corresponding to all three-digit
Armstrong numbers of the first kind.

Proof. Let us start with an Armstrong number of the first kind, say 100A+ 10B+ C = 370.

Take the six-digit number A0B0C0 where A0,B0,C0 are two-digit numbers such that

A 3
0 + B 3

0 + C 3
0 = 104A0 + 102B0 + C0,

where A0 has the form 3a or a3, B0 has the form 7b or b7, and C0 has the form 0c or c0.

Let us start with the possibility A0 = 3a, that is, A 3
0 + B 3

0 + C 3
0 is a six-digit number starting with 3 and

followed by a. There are 4 possible cases to consider.

Let us take the case where B0 = 7b and C0 = 0c.

It should be clear that 30 3 ≤
(
3a
) 3 ≤ 393. We get similar bounds for B 3

0 and C 3
0 .

Now we make use of the following relations:

• minimum possible value of B 3
0 + C 3

0 is equal to minimum possible value of(
A 3
0 + B 3

0 + C 3
0
)
− maximum possible value of A 3

0 ;

• maximum possible value of B 3
0 + C 3

0 is equal to maximum possible value of(
A 3
0 + B 3

0 + C 3
0
)
− minimum possible value of A 3

0 .

From this we deduce that B 3
0 + C 3

0 lies between 240681 and 372999.

Since C 3
0 does not exceed 729 and 723 > 372999, B0 can be only 70 or 71.

If B0 = 70, then A 3
0 + C 3

0 ≤ 56999. Hence A0 lies between 30 and 38.

Here first two digits are 34, hence A0 ∈ [34, 38].

Hence A 3
0 + B 3

0 + C 3
0 = (3a) 3 + 343000+ c 3. It is clear that no ‘a’ satisfies this equation. Similarly,

B0=71 also doesn’t give any solution.

Now let us take the case where B0 = b7 and C0 = 0c.

We know that 0 ≤ C 3
0 ≤ 729. It follows that B 3

0 lies between 239952 and 372999, hence B0 = 67. This
yields

(
3a
) 3

+ 300763+
(
0c
) 3

= 3a670c; from this we get a = 3 and c = 0 or 1.

If we continue the same for B0 = 7b,C0 = c0, we get no solution.
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If we continue the same for B0 = b7,C0 = 0c, we get B0 = 67 and C0 = 0 or 1.

That is, if A0 = a3, then we get A0 = 33, B0 = 67, C0 = 00 or 01.

Now observe that 3 3 + 73 + 03 = 370 and 333 + 673 + 003 = 336700.

This seems to be in the form A 3 + B 3 + C 3 = ABC where A =
10n − 1

3
, B =

2.10n + 1
3

and C = 000...
(n times). Since

A 3 + B 3 + C 3 =

(
10n − 1

3

) 3

+

(
2.10n + 1

3

) 3

+ 03 =
103n + 102n + 10n

3
,

ABC =

(
10n − 1

3

)
(102n) +

(
2.10n + 1

3

)
(10n) + 0(100) =

103n + 102n + 10n

3
,

it is true.

Hence the generalization for 153:

1666…3 + 5000…3 + 3333…3 = 1666…6 5000…0 3333…3.

The same generalisation works for the numbers 370, 371 and 407. These yield the four Armstrong
numbers of the second kind.

Hence there exist Armstrong numbers of the second kind for all three-digit Armstrong numbers of the first
kind.
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