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LATTICE POINT 
GEOMETRY 
Non-existence of a Lattice-point Equilateral Triangle

In the cartesian plane, coordinatized by a pair
of rectangular axes, we say that a given point is a lattice
point if its x- and y-coordinates are both integers. For

example, the points with coordinates (0, 1), (1, 2), (2,−3)
and (−3, 7) are lattice points, whereas (3, 3.5) and (2.3, 1)
are not lattice points. The set of all lattice points in the
coordinate plane is called a lattice. A polygon in the
coordinate plane all of whose vertices are lattice points is
called a lattice polygon. (See Figure 1.) There are many
mathematical results of great interest pertaining to lattices
and to lattice polygons, and we shall talk about some of
them here.
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SHAILESH SHIRALI

Part 1

In this article, Shailesh 
Shirali begins with a 
seemingly simple question 
but develops the answer 
into not one, but four 
different proofs! While 
the content focuses on 
mathematics that has 
many applications, some 
of which are mentioned 
here, the multiplicity of 
proofs is an added draw, 
helping the teacher to 
illustrate innovative 
ways of thinking and 
connections across 
approaches. 
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The notion of a lattice actually originated in the
study of crystals and is a concept derived from
crystallography. The definition of a lattice that we
have adopted is a slightly restricted one, and
crystallographers prefer a more general definition.
But we shall not venture into that area for now.

The question we ask in Part I of this multi-part
article is: Using lattice points as vertices, can we find
an equilateral triangle in the plane? In short: Does
there exist a lattice-point equilateral triangle?
(To avoid needless complications arising from
degenerate cases, we could specify ‘lattice-point
equilateral triangle with nonzero area’. But we
shall assume this to be the case, implicitly.)

We can ask more generally about regular polygons
in the lattice plane. Trivially, there exist squares in
the lattice plane. How about regular pentagons?
Or regular hexagons? Or regular heptagons or
octagons? Clearly, there are infinitely many
questions of this kind which can be posed.

For the moment we shall focus only on the
equilateral triangle. We shall see that there is some
elegant mathematics involved.

There does not exist a lattice-point equilateral
triangle
In this section, we show that there does not exist
an equilateral triangle whose vertices are distinct
lattice points. We do so in four different ways.
Why so many proofs of the same result? Isn’t that
an overkill? Possibly—but not to this author! For
one thing, all the proofs are elegant, illustrating
different mathematical themes; and they all lead in
different directions. Precisely because of this, the
basic result may be generalised in different ways.

First proof: Argument based on area. First we
note the following fact: any lattice-point △ABC
(i.e., a triangle whose vertices are lattice points)
can be enclosed within a lattice-point rectangle in
such a way that each vertex of the triangle either
lies on a side of the rectangle or coincides with a
vertex of the rectangle. Figure 2 illustrates how
this may be done. Small variations occur
depending on how the triangle is oriented, but the
general idea is the same. It will always happen that

at least one vertex of the triangle will coincide with
a vertex of the rectangle. Observe that in this
configuration, the sides of the rectangle necessarily
have integer lengths. The same is true for the two
shorter sides (‘legs’) of the three right-angled
triangles that surround the given lattice triangle. It
follows that the area of the rectangle is an integer,
and the areas of the three right-angled triangles are
all half-integers. (By ‘half-integer’ we mean a
fraction whose denominator is at most 2.) This
implies that the area of the given triangle is a
half-integer as well. In particular, this means that
the area of △ABC is a rational number.
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Figure 2

The argument sketched above is true for any
lattice-point △ABC. Now we consider the case
when ABC is a lattice-point equilateral triangle
with positive area. Let us apply the sine formula
for the area of a triangle: “Area equals half the
product of any two sides times the sine of the
included angle.” Since △ABC is equilateral by
assumption, this yields:

Area of △ABC =
1
2

AB2 · sin 60◦ =
√

3
4

AB2.

Let A = (a, a′) and B = (b, b′) where a, a′, b, b′

are integers. By the Pythagorean formula,

AB2 = (a−b)2+(a′−b′)2 = some nonzero integer,

implying that the area of the triangle is
√

3
4

× some nonzero integer.

Hence the area of the triangle is an irrational
number (since

√
3 is irrational). However, we had

already concluded by a different line of argument
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that the area of the triangle is a rational number.
So we arrive at a contradiction. That is, the
assumption that there exists a lattice-point
equilateral triangle leads to a contradiction and
therefore cannot be true. Hence there does not
exist a lattice-point equilateral triangle. �

Second proof: Argument based on slopes and
angles. Our second proof is simpler than the first
one and establishes a more general result. Thus, it
can be said to be a stronger approach than the one
used above.

The result we prove is easy to state: using only
distinct lattice points as vertices, we cannot even
construct a 60◦ angle! Clearly if this is the case, we
cannot construct a lattice-point equilateral triangle
either.

The proof uses the idea of slope. We claim the
following: if A,B,C are three distinct lattice
points such that AB is not perpendicular to BC,
then tan�ABC is a rational number. To see why,
suppose that neither AB nor BC is parallel to the
y-axis. Let m, n be the slopes of BA, BC
respectively. Then, by a well-known formula from
coordinate geometry, we have:

|tan�ABC| =
∣∣∣∣

m − n
1 + mn

∣∣∣∣ .

By assumption, m, n are rational numbers and
mn ̸= −1. Hence (m − n)/(1 + mn) is a
well-defined rational number; i.e., tan�ABC is a
rational number. If either AB or BC is parallel to
the y-axis, then one of m, n is undefined; so we
cannot use the above formula. However, the same
conclusion holds. (Please fill in the details of the
proof on your own.)

On the other hand, if �ABC = 60◦, then its
tangent equals

√
3, an irrational number.

So the assumption that a 60◦ angle can be formed
using only lattice points as vertices leads to a
contradiction. It follows that the phenomenon is
not possible at all. �

Third proof: A number-theoretic argument.
Assume that there exists a non-degenerate
lattice-point equilateral △ABC. By translating the

triangle parallel to itself suitably, we can make one
of its vertices coincide with the origin. This gives
us a lattice-point equilateral triangle in which one
vertex lies at the origin of the coordinate system.
Assume that this vertex is B. Let A = (a, b) and
C = (c, d), where a, b, c, d are integers. Since the
triangle is equilateral, we must have, for some
positive integer k,

a2 + b2 = k,

c2 + d2 = k,

(a − c)2 + (b − d)2 = k.

By adding the first two equations and subtracting
the third one, we obtain the following:

2ac + 2bd = k.

From this we deduce that k is even. This implies
that a, b are both odd or both even, and, similarly,
that c, d are both odd or both even. In short, a, b
have the same parity and c, d have the same parity.

It may be the case that a, b, c, d are all even. In this
case, △A′BC′ where A′ = (a/2, b/2) and
C′ = (c/2, d/2) is a lattice-point equilateral
triangle as well (it has half the scale of the original
triangle). The whole argument can be framed in
terms of this triangle rather than the original one.
By repeating this step as many times as needed, we
eventually reach a stage where either A or C has at
least one coordinate which is an odd number, i.e.,
at least one of a, b, c, d is odd. So there is no loss
of generality in assuming that at least one of
a, b, c, d is odd.

We now recall an important fact about square
numbers: an even square is of the form 0 (mod 4),
and an odd square is of the form 1 (mod 4).

We had observed above that a, b have the same
parity and c, d have the same parity. Suppose that
a, b are both odd and c, d are both even; then the
relation a2 + b2 = k shows that k ≡ 2 (mod 4),
while the relation c2 + d2 = k shows that
k ≡ 0 (mod 4). We see a contradiction here. The
same contradiction arises if we suppose that a, b
are both even and c, d are both odd. We are forced
to conclude that a, b, c, d all have the same parity.
As we have assumed that at least one of them is an
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A(a, b)

B(c, d)

C

C = (a − d + b, b + c − a)

�

�

�

Figure 3

odd number, it must be that a, b, c, d are all odd.
Hence a − c and b − d are both even.

The relation k = a2 + b2 now tells us that k must
be of the form 2 (mod 4). On the other hand, the
relation k = (a − c)2 + (b − d)2 tells us that k
must be of the form 0 (mod 4).

We have thus arrived at a contradiction, and this
shows that it is not possible to find a lattice-point
equilateral triangle. �

Fourth proof: An argument based on descent.
Our fourth (and last) proof is subtler than the
earlier ones. However, it uses important
mathematical ideas and is worth studying deeply.
Its basis lies in a fundamental symmetry of the
lattice points of the coordinate plane: if about any
lattice point as centre we perform a 90◦ rotation
(either clockwise or anticlockwise), then lattice
points get mapped to lattice points, and
non-lattice points get mapped to non-lattice
points. This may also be checked using simple
computations: a 90◦ anticlockwise rotation about
point A(a, b) will take point B(c, d) to point C
where C = (a − d + b, b + c − a). If a, b, c, d are
integers, then obviously a − d + b and b + c − a
are integers. So if A and B are lattice points, then
C too is a lattice point. (See Figure 3.)

Now let us suppose that there exists a lattice-point
equilateral triangle ABC. Figure 4 depicts the
situation. Consider the effect of a 90◦ rotation
(anticlockwise) about point A. Let the rotation
take point B to point D. As per what we said
above, D must be a lattice point.

�

A

�

B

�

C�

D

�

E

�

F

Figure 4

In the same way, let a 90◦ rotation (clockwise) be
performed about point C as centre. Let this take
point B to point E. Then E too is a lattice point.
Finally, consider the effect of a 90◦ rotation about
point C (anticlockwise). Let it take point D to
point F. Then F too is a lattice point. Hence
△DEF is a lattice-point triangle. We shall show
that DEF is an equilateral triangle.

We start by noting that △CAD and △ACE are
congruent isosceles triangles, each with apex angle
30◦. Hence AE = CD, and AEDC is an isosceles
trapezium, with ED ∥ AC and �ACD = �CAE.
Since �ACD = 75◦, it follows that
�CDE = 105◦.

Again, CD = CF and �DCF = 90◦, so
�CDF = 45◦. Hence �EDF = 60◦.

Next, observe that �DCE = 75◦ − 30◦ = 45◦.
Since �CDF = 45◦ as well, it follows that
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CE ⊥ DF. Since CD = CF, this means that CE
bisects DF at right angles. Hence E is equidistant
from D and F, i.e., ED = EF. Hence
�EFD = �EDF, i.e., �EFD = 60◦. It follows
that △DEF is equilateral. So △DEF is a
lattice-point equilateral triangle.

Now let us compare the sizes of these two
equilateral triangles. We have, from △CDF:

DF
CD

=
1

sin 45◦
.

Next, from △ACD:

CD
AC

=
sin 30◦

sin 75◦
.

Hence:

DF
AC

=
1

sin 45◦
× sin 30◦

sin 75◦
=

sin 45◦

sin 75◦
,

since sin2 45◦ = sin 30◦. Since sin 45◦ is smaller
than sin 75◦, it follows that DF < AC. (In fact,
sin 45◦/sin 75◦ =

√
3 − 1 ≈ 0.732 < 0.75 < 1.)

Hence the equilateral triangle DEF is strictly
smaller than the equilateral triangle ABC: its sides
are shorter than 3/4 of the sides of the original
triangle. Thus, by following the geometrical
procedure described above, we have generated a
new lattice-point equilateral triangle whose sides
are shorter than 3/4 of the sides of the original
triangle.

By applying the same procedure to △DEF, we
generate another lattice-point equilateral triangle
GHI (say), whose sides are shorter than 3/4 of the
sides of △DEF. And we can continue in this way,
generating a sequence of lattice-point equilateral
triangles whose sides are decreasing in a
geometrical ratio which is strictly less than 1. But
this is clearly impossible, because after a while we
will obtain lattice-point triangles whose sides are
less than 1 in length! However, the distance
between two lattice points obviously cannot be
less than 1. Hence such a sequence of triangles
cannot exist.

It follows that a lattice-point equilateral triangle
does not exist. �

Remarks. As noted earlier, four proofs for the
same result may seem like an overkill; but not if
they illustrate important mathematical ideas, and
that is certainly true of the proofs we have
described. Each one is distinctive in its own way,
though the first two have the common feature that
they both depend on the irrationality of

√
3. The

first three arguments are number theoretic, while
the fourth proof is of a completely different
nature.

How close can we come to finding a
lattice-point equilateral triangle?
Having shown the impossibility of some
phenomenon (in this case, the existence of a
lattice-point equilateral triangle), we naturally
want to know how close we can get to it. First we
need a measure to assess how close is ‘close’. We
could choose a measure based on side-lengths, or
one based on angles. Here is a possible measure of
the discrepancy between a given triangle and an
equilateral triangle, based on side-lengths: if the
triangle has side-lengths a, b, c, then we compute
the quantity q given by

q =
ab + bc + ca
a2 + b2 + c2

.

It is a nice exercise (please try it) to show that if
a, b, c are any three real numbers, then

ab + bc + ca ≤ a2 + b2 + c2,

with equality precisely when a = b = c. It follows
that the computed quantity satisfies the inequality
0 < q ≤ 1, and equality holds precisely when the
triangle is equilateral. Hence the gap between q
and 1 is a measure of how far the triangle is from
being equilateral.

We can now embark on a search for lattice-point
triangles for which the q-value is very close to 1.
How do we conduct such a search? Purely
empirically, using a computer to check through
millions of possibilities? Or is there a nicer way
than that? Let us defer this question to the next
part of this article. In the meantime, why don’t we
pass on the question to you? Please see how close
you can come to finding a lattice-point equilateral
triangle.
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