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In this edition of ‘Adventures’ we study a few
miscellaneous problems, some from the
PRMO and some from the AIME (the ‘American

Invitational Mathematics Examination’). As usual, we pose
the problems first and present the solutions later.

Miscellaneous problems
Problem 1. Let a, b be natural numbers such that 2a− b,

a− 2b and a+ b are all distinct squares. What is
the smallest possible value of b? (Problem 15,
PRMO 2018)

Problem 2. Raju’s age and his father’s age in years are 2-digit
integers. When the father’s age is written after
Raju’s age, a 4-digit perfect square is formed. If
the father’s age 25 years ago is written after Raju’s
age at that time, another 4-digit perfect square is
formed. What are the ages of Raju and his
father? (Problem shared with me over email;
thank you, Hitha.)

Problem 3. A 5-digit number n is such that when its middle
digit is removed, the resulting 4-digit number m
is a divisor of n. Find all possible values of n/m.
(Purdue, “Problem of the Week”)

Problem 4. (a) What is the largest prime factor of the
binomial coefficient

(2000
1000

)
?

(b) What is the largest 2-digit prime factor of
the binomial coefficient

(200
100

)
? (AIME

1983)
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Problem 5. For each non-empty subset of {1, 2, 3, 4, 5, 6, 7}, arrange the members in decreasing order
with alternating signs and take the sum. For example, for the subset {5} we get 5. For
{6, 3, 1} we get 6 − 3 + 1 = 4. Find the sum of all the resulting numbers. (AIME 1983)

Solutions to the problems

Solution to problem 1
The problem requires us to look for pairs (a, b) of natural numbers such that 2a− b, a− 2b and a+ b are
distinct squares. Let 2a− b = x2, a− 2b = y2 and a+ b = z2. Since y2 ≥ 0, it follows that a ≥ 2b. If
a = 2b, then x2 = 3b and z2 = 3b, so x2 and z2 are not distinct squares (contrary to the given
information). Hence a > 2b, and x2, y2 and z2 are non-zero squares. We now reason as follows.

• Since (2a− b)− (a− 2b) = a+ b, i.e., x2 = y2 + z2, (y, z, x) is a Pythagorean triple.

• We recall the following from number theory: under division by 3, a square number leaves remainder 0
or 1; the remainder is never 2. Here are two implications of this: (i) if the sum of two squares is a
multiple of 3, then both squares are multiples of 3; (ii) in a Pythagorean triple, at least one number in
the triple is a multiple of 3.

• Observe that x2 + y2 = 3a− 3b, which is a multiple of 3. Hence both x and y are multiples of 3.
Therefore z too is a multiple of 3. So 3 divides all three numbers in the triple (y, z, x). This tells us
that (y/3, z/3, x/3) too is a Pythagorean triple.

• The problem asks us to find pairs (a, b) of natural numbers satisfying the stated conditions, with b as
small as possible. This amounts to finding a Pythagorean triple (y, z, x) in which all three numbers are
multiples of 3, with z2 and y2 as close to each other as possible.

• It is natural to start by looking at primitive Pythagorean triples in which the two smaller numbers are
small and as close as possible. Since no Pythagorean triple exists in which the least number is ≤ 2
(please verify this for yourself ), we focus on the triple (3, 4, 5). We clearly cannot do better than this.
This means that in any Pythagorean triple, the smallest number is ≥ 3 and the second smallest
number is ≥ 4, so the sum of the two smaller numbers is ≥ 7 and the difference between the squares
of the two smaller numbers is ≥ 7.

• Since (y/3, z/3, x/3) is a Pythagorean triple, it follows that (z/3)2 − (y/3)2 ≥ 7, and therefore that
z2 − y2 ≥ 63. Hence b ≥ 21.

• Now it is easy to check that the value b = 21 can be ‘realised.’ We start with the triple (3, 4, 5) and
scale it up by a factor of 3; we get (9, 12, 15). The squares of these three numbers are 81, 144, 225
respectively. So we write a− 2b = 81, a+ b = 144 and solve for a, b; we get a = 123, b = 21. For
this choice of values for a and b, the numbers 2a− b, a− 2b and a+ b are indeed distinct squares;
please check. This justifies the claim that the value b = 21 can be realised. Hence the least possible
value of b is 21.

Solution to problem 2
Let the son’s age be a years, and let the father’s age be b years; both a and b are two-digit numbers. As per
the data given, the following can be stated:

• the number 100a+ b is a perfect square;

• the number 100(a− 25) + (b− 25) is also a perfect square.
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Let 100a+ b = u2 and 100(a− 25) + (b− 25) = v2. Since u2 and v2 are 4-digit perfect squares, u and v
are 2-digit numbers. This means that u+ v < 200.

By subtraction, we get u2 − v2 = 2525. This can be written as (u+ v)(u− v) = 2525.

Now the number 2525 can be factorised as 2525 = 25 × 101. Importantly, 101 is a prime number. In
what ways can 2525 be written as a product of two numbers, neither of which exceed 200? Precisely
because 101 is a prime number, the only possible way is 25 × 101. This implies that u− v = 25 and
u+ v = 101. By addition we obtain 2u = 126, hence u = 63 and therefore v = 38.

Hence u2 = 632 = 3969 and v2 = 382 = 1444. So the son’s age is 39 and the father’s age is 69 (current
ages).

Solution to problem 3
Let a be the 2-digit number formed by the leftmost two digits of n; let b be the middle digit; and let c be
the 2-digit number formed by the rightmost two digits of n. Then we have

n = 1000a+ 100b+ c, m = 100a+ c.

Since m is a divisor of n, we have

100a+ c | 1000a+ 100b+ c,
∴ 100a+ c | 1000a+ 100b+ c− 10(100a+ c),
∴ 100a+ c | 100b− 9c.

Now we establish some inequalities. We compute the least possible value of 100a+ c and the greatest
possible (absolute) value of 100b− 9c. (Note that 100b− 9c can be negative.) We have

100a+ c ≥ 100 × 10 = 1000,

i.e., 100a+ c ≥ 1000. Also, since 0 ≤ b ≤ 9 and 0 ≤ c ≤ 99, we have

−99 × 9 ≤ 100b− 9c ≤ 100 × 9,

i.e.,

−891 ≤ 100b− 9c ≤ 900.

Since 100b− 9c is required to be a multiple of 100a+ c, the only way this can happen is for
100b− 9c = 0, which in turn can only happen if b = 0 and c = 0. But if these conditions hold, then
n = 1000a and m = 100a, and the requirement that m | n is automatically met, for any value of a.

In each case we find that n/m = 10; so this is the required answer.

Solution to problem 4 (a)
It should be fairly clear that the number

(
2000
1000

)
=

2000 × 1999 × 1998 × 1997 × · · · × 1003 × 1002 × 1001
1 × 2 × 3 × 4 × · · · × 998 × 999 × 1000

is divisible by every prime number between 1001 and 2000 (for this prime number will be a factor of the
numerator of the above expression but not a factor of the denominator). Hence the answer is simply the
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largest prime number between 1001 and 2000. It so happens that 1999 is a prime number. Hence this is
the desired answer.

Solution to problem 4 (b)
We require the largest two-digit prime factor of the number

(
200
100

)
=

200 × 199 × 198 × 197 × · · · × 103 × 102 × 101
1 × 2 × 3 × 4 × · · · × 98 × 99 × 100

.

Here is a list of all the two-digit prime numbers:

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

We start from the ‘upper end.’ Could 97 be the answer? No, because it is present once in the denominator
(as 97 itself ), and once in the numerator as well (as a factor of 194). So 97 ‘cancels’ out, which means that
the number

(200
100

)
is not divisible by 97. Could 89 be the answer? Arguing as earlier, we note that it is

present once in the denominator (as 89 itself ) and once in the numerator (as a factor of 178), so
(200

100

)
is

not divisible by 89. Could 83 be the answer? Yet again the answer is no, for the same reason. We see a way
forward now. We clearly require the largest two digit prime number p such that there are more multiples of p
between 101 and 200 than between 1 and 100. This is equivalent to searching for the largest prime number
p such that p < 101 < 2p < 3p < 200. (This way there are two multiples of p between 101 and 200, and
only one multiple of p between 1 and 100.) The number which fits this description is 61 (note that
67 × 3 = 201 > 200); hence 61 is the required answer.

Using the same reasoning, we can show that
(200

100

)
is divisible by each of the following two-digit primes:

59, 53, 37, 17, 13, 11. In the case of 37, we find that it is present twice in the denominator and three
times in the numerator. Observe that the primes 41, 43 and 47 are missing from the list. Each of these
occurs twice in the denominator and twice in the numerator, thereby canceling out.

Here is the full expression of
(200

100

)
as a product of primes:

(
200
100

)
= 23 × 3 × 5 × 11 × 132 × 17 × 37 × 53 × 59 × 61 × 101 × 103 × 107

× 109 × 113 × 127 × 131 × 137 × 139 × 149 × 151 × 157 × 163
× 167 × 173 × 179 × 181 × 191 × 193 × 197 × 199.

It is curious that only two primes occur to a power greater than 1; namely, 2 and 13.

Solution to problem 5
This is a truly beautiful problem!

In an effort to get a handle on the problem, we start with smaller sets and build our way upward, all the
while looking for a pattern. (We can do this using hand calculation.) Here is what we find.

Set Sum
{1} 1

{1, 2} 4
{1, 2, 3} 12

{1, 2, 3, 4} 32

A pattern is already becoming evident: it appears that if the set is {1, 2, 3, 4, . . . , n}, then the sum is
n · 2n−1. If this pattern is valid, then the required answer is 7 · 26 = 448.
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But what could be the explanation for the sum to have this simple form? To find it, we go back to the
original problem, in which the largest number is 7.

Consider any subset A of {1, 2, 3, 4, 5, 6, 7} such that 7 ∈ A. Let B be the subset obtained by removing 7
from A, i.e., B = A \ {7}. Let the alternating sums associated with sets A and B, computed the way
described in the problem, be a and b respectively. What will a+ b be equal to? A moments reflection
reveals that the answer must be 7. To see why, we look at a simple instance. Suppose that A = {2, 5, 7}
and B = {2, 5}. Then the alternating sums associated with the two sets are a = 7 − 5 + 2 and b = 5 − 2
respectively. Adding them, we see that a beautiful cancellation takes place, and the sum is 7.

We infer from this phenomenon that the sum of all such alternating sums is equal to 7 times the number
of subsets of {1, 2, 3, 4, 5, 6, 7} not containing the element 7, i.e., the number of subsets of
{1, 2, 3, 4, 5, 6}. This number is 26 = 64. Hence the required sum is 7 × 64 = 448.

Generalising, if the initial set is {1, 2, 3, . . . , n}, the required sum is n · 2n−1.
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