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Pythagorean Triples 
and Composition

In this discussion I want to demonstrate that:
• If (a1, b1, c1) and (a2, b2, c2) are two Pythagorean

triples, then they can be composed to generate the
following 6 distinct triples:

1. [a1a2, (b1c2 + c1b2), (c1c2 + b1b2)]

2. [b1a2, (a1c2 + c1b2), (c1c2 + a1b2)]

3. [(a1c2 + c1a2), b1b2, (c1c2 + a1a2)]

4. [(b1c2 + c1a2), a1b2, (c1c2 + b1a2)]

5. [(a1a2 − b1b2), (a1b2 + b1a2), c1c2]

6. [(a1a2 + b1b2), (b1a2 − a1b2), c1c2]

• By such compositions, we can generate infinitely many
triples.

We know that Pythagorean triples are infinite in number,
and the most common formula for generating triples is to
take two relatively prime odd numbers s and t, where
s > t ≥ 1, and produce the triple (st, s2−t2

2 , s2+t2
2 ). However,

can we generate all possible triples from just one triple? Can we
generate infinitely many triples from just one triple? These
might be questions worth investigating.

To do this, I take the cue from Brahmagupta’s method of
composition or Bhāvanā as applied to his famous equation
Vargaprakriti (x2 − Ny2 = 1). The method, as we know, can
generate all possible solutions from a single solution. So, if I
can show that from a known, finite set of roots satisfying the
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Pythagorean equation x2 + y2 = z2, it is possible to generate other sets of roots, I shall be able to say that
the equation has infinitely many roots (see the following section).

Generating triples
For convenience, I begin with two Pythagorean triples (a1, b1, c1) and (a2, b2, c2), instead of one. After
developing the formulation, when I know how things are going to develop, I can return to the case of just
one triple and proceed from it to generate others.

Composition 1: As the two triples are Pythagorean, they satisfy the equations a2
1 + b2

1 = c21 and
a2
2 + b2

2 = c22. Rearranging and multiplying the equations, I have,

a2
1a

2
2 = (c21 − b2

1)(c
2
2 − b2

2) = (c1 + b1)(c1 − b1)(c2 + b2)(c2 − b2)

= (c1 + b1)(c2 + b2)(c1 − b1)(c2 − b2)

= (c1c2 + c1b2 + b1c2 + b1b2)(c1c2 − c1b2 − b1c2 + b1b2)

= (c1c2 + b1b2)
2 − (b1c2 + c1b2)

2

Therefore, (a1a2)
2 + (b1c2 + c1b2)

2 = (c1c2 + b1b2)
2.

That is, I have a new Pythagorean triple, (a1a2, b1c2 + c1b2, c1c2 + b1b2).

The way I have obtained this new triple is similar to Brahmagupta’s Bhāvanā (composition) applied to two
given triples. If the triples (a1, b1, c1) and (a2, b2, c2) are named t1 and t2 respectively, and the resultant
triple (a1a2, b1c2 + c1b2, c1c2 + b1b2) is named T, then t1 and t2 composed individually with T will yield
two more triples, one from each composition. Using ⊙ as the symbol for composition, we may represent
the situation as below:

t1 ⊙ t2 ⇒ T(new triple); t1 ⊙ T ⇒ another new triple; t2 ⊙ T ⇒ yet another new triple.

This is enough to indicate that, with this process continued, infinitely many triples will be generated. In other
words, Pythagorean triples are infinite in number. Among the generated triples, there may be ‘recurrences’
under certain conditions which may or may not exist depending on our choice of operations (see Properties
of Composition). However, at no point over an infinite range of compositions will the recurrent triples put
an end to the never-ending process of generating new triples (see the section Infinitely Many Triples and
Infinite Recurrences).

Obviously, if I start with just one triple (a1, b1, c1), composition can well be applied on itself by the
above formula so that (a1, b1, c1) ⊙ (a1, b1, c1) = (a2

1, 2b1c1, c21 + b2
1), a new triple. And thus again,

infinitely many triples can be generated.

Now to continue with the search for triples.

Composition 2: By interchanging the positions of a1 and b1 in Composition 1, that is, by composing
(b1, a1, c1)⊙ (a2, b2, c2) in the same way as above, I get the triple (b1a2, a1c2 + c1b2, c1c2 + a1b2).

Composition 3: Similarly, by multiplying the equations as b2
1 = c21 − a2

1 and b2
2 = c22 − a2

2, I get the triple
(a1c2 + c1a2, b1b2, c1c2 + a1a2).

Composition 4: Again, by interchanging a1 and b1 in Composition 3, that is, by composing
(b1, a1, c1)⊙ (a2, b2, c2) in the same way, I get the triple (b1c2 + c1a2, a1b2, c1c2 + b1a2).
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Composition 5: Now I can proceed to find the triple with the term c1c2. Taking the equations
a2
1 + b2

1 = c21 and a2
2 + b2

2 = c22 as they are and multiplying them, I get,

(c1c2)2 = (a2
1 + b2

1)(a
2
2 + b2

2)

= (a1 + ib1)(a1 − ib1)(a2 + ib2)(a2 − ib2) [complex factorization; here i =
√
−1]

= (a1 + ib1)(a2 + ib2)(a1 − ib1)(a2 − ib2)

= [(a1a2 − b1b2) + i(a1b2 + b1a2)][(a1a2 − b1b2)− i(a1b2 + b1a2)]

= (a1a2 − b1b2)
2 + (a1b2 + b1a2)

2;

that is, another triple (a1a2 − b1b2, a1b2 + b1a2, c1c2). It does not matter if a1a2 < b1b2; what matters
in a triple is the absolute value |a1a2 − b1b2|.

Composition 6: Now, as (a1a2 − b1b2)
2 + (a1b2 + b1a2)

2 = (a1a2 + b1b2)
2 + (b1a2 − a1b2)

2, there may
be yet another triple, (a1a2 + b1b2, b1a2 − a1b2, c1c2). Again, to avoid negative values, I can take
|b1a2 − a1b2|. It may be noticed that this is the same as composing (b1, a1, c1)⊙ (a2, b2, c2) according to
the formula of Composition 5.

Thus, from the two triples (a1, b1, c1) and (a2, b2, c2) [or t1 and t2], I have generated by compositions
(C1,C2,C3,C4,C5,C6) similar to Bhāvanā the following six distinct triples:

C1 :[a1a2, (b1c2 + c1b2), (c1c2 + b1b2)]
C2 :[b1a2, (a1c2 + c1b2), (c1c2 + a1b2)]
C3 :[(a1c2 + c1a2), b1b2, (c1c2 + a1a2)]
C4 :[(b1c2 + c1a2), a1b2, (c1c2 + b1a2)]
C5 :[(a1a2−b1b2), (a1b2+b1a2), c1c2]
C6 :[(a1a2+b1b2), (b1a2−a1b2), c1c2]

It should be noted that, as in Brahmagupta’s Bhāvanā, it is the property that (x2 ± Ny2) is ‘closed under
multiplication’ that is made use of in these transformations.

Notation: C1,C2, etc., being the six composition formulas for generating triples, the compositions can be
represented as “C1(t1 ⊙ t2)”, meaning “t1 composed with t2 according to formula C1”, or
“C3[t1 ⊙ C2(t1 ⊙ t2)]”, meaning “the result of t1 composed with t2 according to formula C2 is composed
with t1 according to formula C3”, and so on.

Primitive or Non-Primitive Triples: Obviously, C1,C2, etc., can generate Primitive as well as
Non-Primitive Triples. I will be interested in primitive triples (PPT) only, and all numerical examples of
triples that I use will be reduced to their corresponding PPTs. This will lead to a search for the conditions
under which non-PPTs are generated, and also to the big issue of “recurrence of triples in a continuous
process of composition.”

How triples multiply
The six formulas, if laid out on an Excel sheet, will go on generating triples if input triples are entered. In Table
1 I have done this, starting with t = (3, 4, 5), the smallest triple. I have first done the compositions
C1(t ⊙ t),C2(t ⊙ t),C3(t ⊙ t),C4(t ⊙ t),C5(t ⊙ t),C6(t ⊙ t), and reduced them to their corresponding
PPTs, say, T1,T2,T3,T4,T5,T6 respectively. Then I have proceeded to compose t with each of these
PPTs. In the whole process, I have reduced every composition to its corresponding PPT (without negative signs).
Note: I could not compose t with T6 because T6 = C6(t ⊙ t) = (25, 0, 25) ⇒ (1, 0, 1), a ‘trivial’ triple.
Also, in composing t with T5 = C5(t⊙ t) I have not ignored the negative sign in C5(t⊙ t) = (−7, 24, 25)
because, as I will show later, keeping or ignoring the negative signs can have quite different consequences.
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t T C1 T1 = C2 T2 = C3 T3 = C4 T4 = C5 T5 = C6 T6=

C1/gcd C2/gcd C3/gcd C4/gcd C5/gcd C6/gcd

3 3 9 9 12 12 30 15 35 35 −7 7 25 1

4 4 40 40 35 35 16 8 12 12 24 24 0 0

5 5 41 41 37 37 34 17 37 37 25 25 25 1

gcd 1 1 1 1 2 1 1 1 1 1 25 1

3 9 27 27 36 36 168 21 209 209 −133 133 187 187

4 40 364 364 323 323 160 20 120 120 156 156 −84 84

5 41 365 365 325 325 232 29 241 241 205 205 205 205

gcd 1 1 1 1 8 1 1 1 1 1 1 1

3 12 36 36 48 24 171 171 208 208 −104 104 176 176

4 35 323 323 286 143 140 140 105 105 153 153 −57 57

5 37 325 325 290 145 221 221 233 233 185 185 185 185

gcd 1 1 2 1 1 1 1 1 1 1 1 1

3 15 45 5 60 60 126 63 143 143 13 13 77 77

4 8 108 12 91 91 32 16 24 24 84 84 36 36

5 17 117 13 109 109 130 65 145 145 85 85 85 85

gcd 9 1 1 1 2 1 1 1 1 1 1 1

3 35 105 105 140 140 286 143 323 323 57 57 153 153

4 12 208 208 171 171 48 24 36 36 176 176 104 104

5 37 233 233 221 221 290 145 325 325 185 185 185 185

gcd 1 1 1 1 2 1 1 1 1 1 1 1

3 −7 −21 21 −28 28 40 5 65 65 −117 117 75 3

4 24 220 220 195 195 96 12 72 72 44 44 −100 4

5 25 221 221 197 197 104 13 97 97 125 125 125 5

gcd 1 1 1 1 8 1 1 1 1 1 25 1

Table 1. C1,C2, etc., are the composition formulas applied on t ⊙ T.
The ‘recurrent’ triples are highlighted in different colours.

The table shows that 36 triples have been generated out of which, except a few that recur (after ignoring
negative signs), all the others are distinct (including a ‘trivial’ one). The calculations may be carried out on
an Excel sheet. The procedure has been explained in the Appendix of this article.

Properties of Composition
Based on the composition formulas and with reference to the triples generated by composition in Table 1,
I can study the properties of composition.

1. PPTs and Non-Primitive PTs. Both PPTs and non-primitive PTs (i.e., Pythagorean triples that are not
primitive, which means that the three numbers in the triple have a common factor exceeding 1) are
generated by the compositions. Thus I had (9, 40, 41), (35, 12, 37), etc., as well as (30, 16, 34), (40,
96, 104), etc. As PPTs are more fundamental, the non-primitive PTs have all been reduced to their
corresponding PPTs in this study (with negative signs ignored).
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2. b = c − 1 and b < c − 1. PPTs (a, b, c) being of two kinds, one where the even member b = c − 1
and the other where b < c − 1, it is found that both kinds are generated by the compositions. So I had
(5, 12, 13), (13, 84, 85), etc., as well as (143, 24, 145), (57, 176, 185), etc.

3. Reversal of order: first two terms. It is interesting to see what happens when the order of the first two
terms is reversed in any one or both of the triples. The composition formulas are so constructed that we
have the following consequences (see Table 2 below):

(1) comparing (a1, b1, c1)⊙ (a2, b2, c2) with (b1, a1, c1)⊙ (a2, b2, c2): (C1,C2) exchange results,
(C3,C4) exchange results; and (C5,C6) not only exchange results, but with the order of the first
two terms of the resultant triple reversed;

(2) comparing (a1, b1, c1)⊙ (a2, b2, c2) with (a1, b1, c1)⊙ (b2, a2, c2) : (C1,C4) exchange results with
the order of the first two terms of the resultant triple reversed; so do (C2,C3) and (C5,C6)
(ignoring negative signs);

(3) comparing (a1, b1, c1)⊙ (a2, b2, c2) with (b1, a1, c1)⊙ (b2, a2, c2): (C1,C3) exchange results with
the order of the first two terms of the resultant triple reversed; so do (C2,C4). But results for
(C5,C6) remain unchanged if negative signs are ignored.

t1 t2 C1 T1= C2 T2= C3 T3= C4 T4= C5 T5= C6 T6=

C1/gcd C2/gcd C3/gcd C4/gcd C5/gcd C6/gcd

3 35 105 105 140 140 286 143 323 323 57 57 153 153

4 12 208 208 171 171 48 24 36 36 176 176 104 104

5 37 233 233 221 221 290 145 325 325 185 185 185 185

gcd 1 1 1 1 2 1 1 1 1 1 1 1

4 35 140 140 105 105 323 323 286 143 104 104 176 176

3 12 171 171 208 208 36 36 48 24 153 153 57 57

5 37 221 221 233 233 325 325 290 145 185 185 185 185

gcd 1 1 1 1 1 1 2 1 1 1 1 1

3 12 36 36 48 24 171 171 208 208 −104 104 176 176

4 35 323 323 286 143 140 140 105 105 153 153 −57 57

5 37 325 325 290 145 221 221 233 233 185 185 185 185

gcd 1 1 2 1 1 1 1 1 1 1 1 1

4 12 48 24 36 36 208 208 171 171 −57 57 153 153

3 35 286 143 323 323 105 105 140 140 176 176 −104 104

5 37 290 145 325 325 233 233 221 221 185 185 185 185

gcd 2 1 1 1 1 1 1 1 1 1 1 1

Table 2. C1,C2, etc. are the composition formulas applied on t1 ⊙ t2.

4. Reversal of sequence of composition: Commutativity check. In constructing the formulas, I
assumed the sequence t1 ⊙ t2, where t1 = (a1, b1, c1), t2 = (a2, b2, c2). When the sequence is reversed
and t2 ⊙ t1 is composed it is found that C1(t1 ⊙ t2) = C1(t2 ⊙ t1),C3(t1 ⊙ t2) = C3(t2 ⊙ t1),
C5(t1 ⊙ t2) = C5(t2 ⊙ t1); that is, the compositions C1,C3,C5 are commutative under reversal of
sequence. In fact, C6 is also commutative if negative signs are ignored in the results. But C2 and C4
interchange results with the order of the first two terms reversed. See Table 3 below.
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t1 t2 C1 T1 C2 T2 C3 T3 C4 T4 C5 T5 C6 T6

171 57 9747 9747 7980 7980 44232 5529 38497 38497 −14893 14893 34387 34387

140 176 64796 64796 70531 70531 24640 3080 30096 30096 38076 38076 −22116 22116

221 185 65525 65525 70981 70981 50632 6329 48865 48865 40885 40885 40885 40885

gcd 1 1 1 1 8 1 1 1 1 1 1 1

57 171 9747 9747 30096 30096 44232 5529 70531 70531 −14893 14893 34387 34387

176 140 64796 64796 38497 38497 24640 3080 7980 7980 38076 38076 22116 22116

185 221 65525 65525 48865 48865 50632 6329 70981 70981 40885 40885 40885 40885

gcd 1 1 1 1 8 1 1 1 1 1 1 1

Table 3. C1,C2, etc. are the composition formulas applied on t1 ⊙ t2;T1,T2, etc. as in Tables 1 & 2.

5. Chain of compositions: Associativity check.
Let t1 = (3, 4, 5), t2 = (5, 12, 13), t3 = (7, 24, 25), t4 = (15, 8, 17). Let the chain of compositions
t1 ⊙ t2 ⊙ t3 ⊙ t4 be made under all of C1,C2, ....C6. It is found that C1[{C1(t1 ⊙ t2)}⊙
{C1(t3 ⊙ t4)}] = C1[(15, 112, 113)⊙ (105, 608, 617)] = (175, 15312, 15313). Also,
C1[C1{C1(t1 ⊙ t2)} ⊙ t3}]⊙ t4] = C1{[C1{(15, 112, 113)⊙ (7, 24, 25)}]⊙ (15, 8, 17)} =
C1{(105, 5512, 5513)⊙ (15, 8, 17)} = (175, 15312, 15313), which is the same as
C1[{C1(t1 ⊙ t2)} ⊙ {C1(t3 ⊙ t4)}]. This shows that a chain of compositions under C1 is associative.
Similarly, compositions under C3,C5 are also associative. Again, C6 is also associative if negative signs
are ignored in composition. Compositions under C2 and C4 only are non-associative.

6. Negative values. As discussed above and as will be seen in Table 4 below, keeping or ignoring negative
signs produces quite a different picture in terms of the triples generated. So, strictly speaking, retaining
the negative signs ought to be a more authentic process.

t1 t2 C1 T1 C2 T2 C3 T3 C4 T4 C5 T5 C6 T6

3 3 9 9 12 12 30 15 35 35 −7 7 25 1

4 4 40 40 35 35 16 8 12 12 24 24 0 0

5 5 41 41 37 37 34 17 37 37 25 25 25 1

gcd 1 1 1 1 2 1 1 1 1 1 25 1

−7 3 −21 21 72 72 40 5 195 195 −117 117 75 3

24 4 220 220 65 65 96 12 −28 28 44 44 100 4

25 5 221 221 97 97 104 13 197 197 125 125 125 5

gcd 1 1 1 1 8 1 1 1 1 1 25 1

7 3 21 21 72 8 110 55 195 195 −75 3 117 117

24 4 220 220 135 15 96 48 28 28 100 4 44 44

25 5 221 221 153 17 146 73 197 197 125 5 125 125

gcd 1 1 9 1 2 1 1 1 25 1 1 1

Table 4. C1,C2, etc. are the composition formulas applied on t1 ⊙ t2;T1,T2, etc. as in Tables 1 & 2.
(We have highlighted differences in values.)

7. Return to the original triple. From definition, C5[(a1, b1, c1)⊙ (a2, b2, c2)] = (a1a2 − b1b2, b1a2+
a1b2, c1c2) = T (say). Now, C6[T⊙ (a1, b1, c1)] = c21. (a2, b2, c2), that is, the original triple (a2, b2, c2)
returns. Similarly, in C6[T ⊙ (a2, b2, c2)] = c22. (a1, b1, c1), which indicates return of the original triple
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(a1, b1, c1). Example: C5[(7, 4, 5) • (15, 8, 17)] = (−87, 416, 425). Then, C6[(−87, 416, 425)•
(15, 8, 17)] = (2023, 6936, 7225) ⇒ (7, 24, 25), dividing by gcd = 172; and C6[(−87, 416, 425)•
(7, 24, 25)] = (9375, 5000, 10625) ⇒ (15, 8, 17), dividing by gcd = 252.

8. Non-Primitive PTs: the GCD. It can be seen that in each of the composed triples, there is a product
term like a1a2, b1a2, b1b2, a1b2, c1c2; the rest are either sums or differences of products, like
(b1b2 + c1c2)or(a1a2 − b1b2). In generating non-primitive triples, it is always the product term that
plays the decisive role. If d > 1, where d is a common divisor between the two factors of the product term,
and certain other conditions are satisfied, then the composed triple will be a non-PPT. In the discussion
below, I will look into these certain other conditions.

C1: Take the triple C1[(a, b, c)⊙ (x, y, z)] = (ax, bz + cy, by + cz) . I assume that b and y are even. Let
a common divisor, not necessarily the gcd, of (a, x) be d > 1. So ax contains the divisor d2. Let
a = dma0, x = dnx0. Let dm > a0, x0 > dn. Then, b = 1

2(d
2m2 − a2

0), c =
1
2(d

2m2 + a2
0); and

y = 1
2(x

2
0 − n2d2), z = 1

2(x
2
0 + n2d2). So, ax = d2mna0x0; bz + cy = 1

2d2(m2x2
0 − n2a2

0); and,
by + cz = 1

2d2(m2x2
0 + n2a2

0). As a and x are both odd, so in the composed triple, the gcd
(ax, bz + cy, by + cz) = d2. The necessary condition here is dm > a0, x0 > dn; if it is not satisfied, the
gcd = 1. Thus, C1[(15, 8, 17)⊙ (255, 32, 257)] = (3825, 2600, 4625), a non-PPT with gcd = 52.
Again, C1[(3, 4, 5)⊙ (21, 220, 221)] = (63, 1984, 1985), a PPT; whereas
C1[(3, 4, 5)⊙ (21, 20, 29)] = (63, 216, 225), a non-PPT with gcd = 32.

C2: Now take C2[(a, b, c)⊙ (x, y, z)] = (bx, az + cy, ay + cz) . Let b = dmb0, x = dnx0. With b even
and x odd, d, n, x0 should be odd. So, a = b2

0 − (md
2 )2, c = b2

0 + (md
2 )2; and y = 1

2(d
2n2 − x2

0),
z = 1

2(d
2n2 + x2

0). Thus, (bx, az + cy, ay + cz) = [d2mnb0x0,
1
4d2(4b2

0n2 − m2x2
0),

1
4d2(4b2

0n2 + m2x2
0].

To make md even, as d is odd, m should be even; and that also makes the second and third terms
integers. Note: Here the necessary condition is b0 >

md
2 , dn > x0, and m even. Thus,

C2[(11, 60, 61)⊙ (15, 8, 17)] = (900, 675, 1125), a non-PPT with gcd = 225.

C4: Similar to C2 will be the case for C4[(a, b, c)⊙ (x, y, z)] = (bz + cx, ay, bx + cz).

C3: In C3[(a, b, c)⊙ (x, y, z)] = (az + cx, by, ax + cz) the terms are all even; so, there is always a
common divisor 2. But, let b = dmb0, y = dny0. Here, if the condition a = b2

0 − (md
2 )2,

c = b2
0 + (md

2 )2, and x = (nd)2 − ( y0
2 )

2, z = (nd)2 + ( y0
2 )

2, is satisfied, then az + cx =
1
8d2(16n2b2

0 − m2y2
0), by = d2mnb0y0, ax + cz = 1

8d2(16n2b2
0 + m2y2

0). Here the necessary conditions
are: md and y0 are even, and b0 >

md
2 , nd > y0

2 . So, gcd(az + cx, by, ax + cz) ≥ 2. Thus,
C3[(7, 24, 25)⊙ (35, 12, 37)] = (1134, 288, 1170), with gcd = 18; and, C3[(5, 12, 13)⊙
(7, 24, 25)] = (216, 288, 360), which has a gcd = 72. But C3[(5, 12, 13)⊙ (9, 40, 41)] =
(322, 480, 578) has gcd = 2.

C5 & C6: If for (a, b, c) and (x, y, z) the gcd(c, z) = d > 1, then a non-PPT with gcd = d2 between the
terms will be generated by either C5 or C6, never both. Obviously, C5 and C6 generate different triples
with the same term cz. Thus, for (5, 12, 13)⊙ (33, 56, 65),C5 generates (−507, 676, 845), with
gcd = 132 (if negative signs are ignored); and C6 generates (837, 116, 845), a PPT. But for
(5, 12, 13)⊙ (63, 16, 65), C5 generates (123, 836, 845), a PPT; while C6 gives (507, 676, 845), with
gcd = 132.

9. Recurrence of triples. The discussion on properties shows that in a process of composition there will
be recurrence of triples (as exemplified by Tables 1 - 4). Recurrence of triples will be caused by:
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(i) Reversal of the order of the first two terms of any one or both of the composing triples. For
instance, (12, 35, 37) and (35, 12, 37) were both generated in the first row in Table 1, and both
were used in subsequent compositions.

(ii) Reversal of the sequence of composition of the composing triples: that is, by commutativity,
wherever it exists.

(iii) Associativity, wherever it exists: that is, generating the same triple through different sequences in a
given chain of compositions.

[(ii) and (iii) can happen when all possible sequences of compositions are tried during the
process.]

(iv) Return to the original triple.

(v) Most importantly, when non-PPTs are reduced to PPTs: that is, when the PPT thus generated
may have been generated earlier or will be generated later in the composition process by
composing different triples.

Infinitely many triples and infinitely many recurrences
Let us imagine a continuous composition process that starts with one triple (a PPT), which is composed
with itself; and all non-primitive PTs that are generated are reduced to their corresponding PPTs. Then
every PPT thus produced is composed with itself and with every other triple; and the process goes on
indefinitely, and all possible sequences of composition are admitted. What is the outcome of such a
process?

It has been seen that:

1. The formulas C1 to C6 constitute a system by which infinitely many Pythagorean triples can be
generated by compositions, starting from just one triple.

2. Triples generated by the composition formulas are not all unique; occasionally the triples recur.

As the number of compositions increases, the number of recurrences is also likely to increase. But that will
depend on the compositions chosen. The big question is: Will there be a point of ‘saturation’ when triples are
merely repeated and no new ones are generated?

But we have seen that recurrences occur only when very specific conditions obtain. So, at every
composition there will be as much possibility of a new triple generation as of the recurrence of an old one.
Therefore, the point of ‘saturation’ will never come to be, because while infinitely many new triples will be
generated, there will also be infinitely many recurrences, but this will be a never-ending process.

What will happen is that:

1. Over a finite range of compositions, the number of recurrences of triples will vary according to the
compositions chosen.

2. Over an infinite range of compositions, while infinitely many new triples will be generated, there will also be
infinitely many recurrences; but that being a never-ending process, no point of ‘saturation’ when new triples
cease to be generated will ever be reached.



90 Azim Premji University At Right Angles, March 2019

Appendix

The Compositions on an EXCEL sheet

This is how the Tables have been created on EXCEL. The following table is a representation of one set of
compositions (C1 − C6) in which the cells are marked as A1, A2, A3, B1, B2, B3, etc. The EXCEL
formulas in each cell are shown below the table.

A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1

A2 B2 C2 D2 E2 F2 G2 H2 I2 J2 K2 L2 M2 N2

A3 B3 C3 D3 E3 F3 G3 H3 I3 J3 K3 L3 M3 N3

gcd C4 D4 E4 F4 G4 H4 I4 J4 K4 L4 M4 N4

Triple (a1, b1, c1) is laid out in the cells: A1: a1; A2: b1; A3: c1

Triple (a2, b2, c2) is laid out in the cells: B1: a2; B2: b2; B3: c2

C1: [a1a2, (b1c2 + c1b2), (c1c2 + b1b2)]

C1 = A1*B1; C2 = A2*B3+B2*A3; C3 = A2*B2+A3*B3; C4 = GCD(ABS(C1),ABS(C2),ABS(C3))

D1 = ABS(C1)/C4; D2 = ABS(C2)/C4; D3 = ABS(C3)/C4; D4 = GCD(D1,D2,D3)

C2: [b1a2, (a1c2 + c1b2), (c1c2 + a1b2)]

E1 = A2*B1; E2 = A1*B3+A3*B2; E3 = A1*B2+A3*B3; E4 = GCD(ABS(E1),ABS(E2),ABS(E3))

F1 = ABS(E1)/E4; F2 = ABS(E2)/E4; F3 = ABS(E3)/E4; F4 = GCD(F1,F2,F3)

C3: [(a1c2 + c1a2), b1b2, (c1c2 + a1a2)]

G1 = A1*B3+A3*B1; G2 = A2*B2; G3 = A1*B1+A3*B3; G4 = GCD(ABS(G1),ABS(G2),ABS(G3))

H1 = ABS(G1)/G4; H2 = ABS(G2)/G4; H3 = ABS(G3)/G4; H4 = GCD(H1,H2,H3)

C4: [(b1c2 + c1a2), a1b2, (c1c2 + b1a2)]

I1 = A2*B3+A3*B1; I2 = A1*B2; I3 = A2*B1+A3*B3; I4 = GCD(ABS(I1),ABS(I2),ABS(I3))

J1 = ABS(I1)/I4; J2 = ABS(I2)/I4; J3 = ABS(I3)/I4; J4 = GCD(J1,J2,J3)

C5: [(a1a2− b1b2), (a1b2+ b1a2), c1c2]

K1 = A1*B1−A2*B2; K2 = A1*B2+A2*B1; K3 = A3*B3; K4 = GCD(ABS(K1),ABS(K2),ABS(K3))

L1 = ABS(K1)/K4; L2 = ABS(K2)/K4; L3 = ABS(K3)/K4; L4 = GCD(L1,L2,L3)
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C6: [(a1a2+ b1b2), (b1a2− a1b2), c1c2]

M1= A1*B1+A2*B2; M2= A2*B1−A1*B2; M3= A3*B3; M4=GCD(ABS(M1),ABS(M2),ABS(M3))

N1 = ABS(M1)/M4; N2 = ABS(M2)/M4; N3 = ABS(M3)/M4; N4 = GCD(N1,N2,N3)
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