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Azim Premji University At Right Angles, March 2019

Pure geometry or Euclidean geometry is a body
of theorems and corollaries logically derived from
certain axioms and postulates as presented in Euclid’s

Elements. Later geometers, both Greek and others, have
added to this. Occasionally some algebra is brought in but
not trigonometry. Abraham Lincoln is said to have read the
Elements just for the reasoning.

Problems

Problem VIII–1–M.1
A fallacy is an argument that sounds logical but is actually
erroneous. So the conclusion drawn is false. Often the error
is not easy to spot – these could be erroneous assumptions,
unwarranted generalisations or applying logic out of context.
Fallacies are fun to go through and can help us gain greater
alertness in reasoning. Here is a fallacy in geometry – a
‘proof ’ that “all triangles are equilateral.” The question is to
spot the error.

In an arbitrary triangle ABC (Figure 1) the bisector of �A
meets the perpendicular bisector of side BC at point O. Join
OB and OC. OB = OC as any point on the perpendicular
bisector of a line segment is equidistant from the two ends of
the line segment.

Now drop perpendiculars OY and OZ from O to AC and
AB respectively. OY = OZ as any point on an angle bisector
is equidistant from the arms forming the angle.

Now consider ΔBOZ and ΔCOY. We have OB = OC,
OZ = OY, and �BZO = �CYO (right angles).

So ΔBOZ ∼= ΔCOY (RHS congruency), and therefore BZ =
CY. But we have AZ = AY and so AB = AC.

Similarly we could show that AC = BC and thereby claim
that ΔABC is equilateral.
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Figure 1

Problem VIII–1–M.2
Figure 2 shows two triangles ΔABC and ΔPQR. AB = PQ, AC = PR, and �BAC and �QPR are
supplementary.

Give a geometric proof that the triangles are equal in area.
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Figure 2

Problem VIII–1–M.3
Figure 3 shows a rectangle composed of three squares with some additional lines drawn. Give a geometric
proof that �EAD+ �EBD = �ECD(= 45◦).
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E 

Figure 3
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Problem VIII–1–M.4
Figure 4 shows three semicircles on a shared base and on the same side of it. The sum of the diameters (or
radii) of the two smaller semicircles equals the diameter (or radius) of the largest semicircle (BA + AC =
BC). We can consider the radius of the largest semicircle to be unity and that of one of the smaller to be r,
while the radius of the other is 1 − r. AH is drawn perpendicular to BC, with H on the largest semicircle.
HB intersects one of the smaller semicircles at D, while HC intersects the other at E. DE intersects AH
at O.

Prove the following:

(a) The area of the circle with diameter AH equals the area of the region enclosed by the three semicircles
(shaded blue).

(b) AH and DE are equal in length and bisect each other.

Figure 4

Problem VIII–1–M.5
The angles at the 5 corners of a pentagram ( 5-pointed star) total to 180◦. This is easy to prove for a
symmetrical figure. The central part is a regular pentagon. Knowing its interior angle to be 108◦ one can
see that each base angle of the isosceles triangles is 72◦ and hence calculate the angle at each apex to be
36◦. So the 5 apex angles add to 180◦. The question here is to prove the same for any (asymmetrical)
pentagram.

Figure 5
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Solutions

Problem VIII-1-M.1
The fallacy lies in the assumption that the bisector of �A and the perpendicular bisector of BC meet inside
the triangle. If AB ̸= AC, they meet outside the triangle. This can be seen if we note that the bisector of
�A divides BC in the ratio AB : AC. Hence if AB < AC say, then bisector of �A will meet BC at a point
closer to B than to C. When extended it will meet the perpendicular bisector of BC at point O outside the
triangle. Do make an actual construction and observe the following (Figure 1.1):

Figure 1.1

Point O lies on the circumcircle of ΔABC.
Point Y lies on AC while point Z lies on AB extended.

Congruent triangles COY and BOZ do get formed but we have AC − CY = AB + BZ.

If AB = AC, the two lines merge into a single line of symmetry.

Figure 1.1 does not represent a valid geometrical situation and therein lies the fallacy.

Additional comment from the editor. The reader may wish to explore with this configuration further, as
there is a subtle issue involved. What we need to show is that (as in Figure 1.1), it can never happen that
both Y and Z lie in the interiors of AC and AB respectively, or that both lie on the extensions of these sides
respectively. It will always happen that one of the points lies in the interior of its respective side and the
other point lies on the extension of the side. We need to show that this will always be the case. (If a
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situation occurred when both Y and Z lie on the extensions of their respective sides, the original reasoning
would continue to work and the same fallacy would result.) We invite the reader to explore further.

Problem VIII-1-M.2
Figure 2 shows two triangles ΔABC and ΔPQR. AB = PQ, AC = PR, and �BAC and �QPR are
supplementary.

Give a geometric proof that the triangles are equal in area.

Solution. To prove that ΔABC and ΔPQR are of equal area we carry out the following construction.
Extend CA to point D such that AC = AD (Figure 2.1). Join BD.

Figure 2.1

Considering ΔABD and ΔPQR, we have

AB = PQ, AD = AC = PR and �DAB = 180◦ − �BAC = �QPR.

Hence the triangles are congruent. Since BA is a median of ΔBCD, ΔABC, ΔABD and therefore ΔPQR
are of equal area.

Problem VIII-1-M.3
Figure 3 shows a rectangle composed of three squares with some additional lines drawn. Give a geometric
proof that �EAD+ �EBD = �ECD(= 45◦).

Solution.We take the squares in Figure 3 to have sides of unit length. In ΔECA the side lengths, in
increasing order, are

√
2, 2,

√
10, while the side lengths of ΔBCE are 1,

√
2,

√
5. That is, CE/BC =

AC/EC = AE/BE. As the corresponding lengths are in proportion, the triangles are similar and the angles
opposite corresponding sides are equal. Hence �EAC = �BEC. Therefore �EAD + �EBD = � BEC +
�EBD = �ECD = 45◦.

Problem VIII-1-M.4
Figure 4 shows three semicircles on a shared base and on the same side of it. The sum of the diameters (or
radii) of the two smaller semicircles equals the diameter (or radius) of the largest semicircle (BA + AC =
BC). We can consider the radius of the largest semicircle to be unity and that of one of the smaller to be r,
while the radius of the other is 1 − r. AH is drawn perpendicular to BC, with H on the largest semicircle.
HB intersects one of the smaller semicircles at D, while HC intersects the other at E. DE intersects AH
at O.
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Prove the following:

(a) The area of the circle with diameter AH equals the area of the region enclosed by the three semicircles
(shaded blue).

(b) AH and DE are equal in length and bisect each other.

Solution.

(a) It is a well-known result that the length AH is the geometric mean of the lengths BA and AC. You
may be aware that the geometric mean of two positive quantities a and b is

√
ab. As mentioned

earlier, we take the radius of the largest semicircle to be unity and the radius of the semicircle BDA to
be r. Then length BA = 2r, while length AC = 2(1− r). Then AH =

√
[2r · 2(1− r)] =

2
√
r(1− r). The area of the circle with AH as diameter would then be πr(1− r).

Area of region enclosed by the three semicircles is area of large semicircle diminished by sum of areas
of the other two, which is π

2 − π
2 (r

2 + (1− r)2) which simplifies to πr(1− r).

(b) �BHC, �BDA and �AEC are all right angles being angles in semicircles, making quadrilateral
HDAE a rectangle. Hence HA and DE are equal and bisect each other.

Figure 4 was studied by the ancient Greeks. Archimedes named it “Arbelos,” which is the Greek word
for the ‘shoemaker’s knife,’ which the figure resembles.

Problem VIII-1-M.5
The angles at the 5 corners of a pentagram (5-pointed star) total to 180◦. This is easy to prove for a
symmetrical figure. The central part is a regular pentagon. Knowing its interior angle one can calculate the
angle at the apex of any of the triangles in the figure. The question here is to prove the same for any
(asymmetrical) pentagram.

Solution. One way to prove the above statement is to note that the 10 angles at the bases of the 5 triangles
form two sets of 5 exterior angles of the central pentagon. So they add up to 2 × 360◦ = 720◦. The sum
of all the angles of the 5 triangles would total 5 × 180◦ = 900◦. So the apex angles should add up to
180◦. An alternative proof is given below as a self-explanatory figure.

Figure 6

Acknowledgements. Figure 4 is taken from Wikipedia.


