
7Azim Premji University At Right Angles, March 2022

Keywords: Euclid, plane geometry, instrument box, ruler, compass, 
protractor, rope

MAHIT 
WARHADPANDE

1. Introduction 
Euclid’s Elements (~300 BCE) built the edifice of (plane) Geometry 
using a toolkit comprising of two instruments: the ‘straight edge’ 
and the ‘collapsible compass’ [1]. Many centuries later (1941 CE), 
in Basic Geometry, George Birkhoff and Ralph Beatley provided 
an alternative construction of this edifice using a three-instrument 
toolkit which contemporary students continue to use: the ‘ruler’, the 
‘compass’ and the ‘protractor’ [2]. In contrast, a few centuries before 
Euclid (~800 BCE), Indian vedic texts (Shulbasutras) recommended 
the ‘rajju’, i.e., a rope, as the lone instrument to be used for 
geometrical constructions [3]. 

In the first part of this two-part article, we introduce these three 
toolkits and explore some ideas for rope based geometrical 
constructions. In the second part of the article, we will compare 
the three toolkits in terms of their ability to do various geometric 
constructions and discuss some ideas to enable the construction of 
the tools themselves1. 

2. Euclid and Birkhoff-Beatley Toolkits
We begin by contrasting Birkhoff and Beatley’s toolkit with that of 
Euclid.

2.1 Ruler vs. Straight Edge
A straight edge could be described as a ruler without markings 
(Figure 1). Thus, a straight edge and a ruler can both be used to draw 
a straight line but, unlike a ruler, a straight edge cannot quantify the 
length of that line.
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1 Historically, things may have been done differently from the ideas discussed here. 
Our focus however, is on the mathematical correctness of these ideas.



8 Azim Premji University At Right Angles, March 2022

 

Figure 1: Straight edge (Euclid) vs. ruler  
(Birkhoff- Beatley)

Birkhoff and Beatley assumed that the ruler 
is marked with infinite resolution, so any 
length (rational or irrational) can be measured/
constructed exactly using such a ruler.2

2.2 Normal vs. Collapsible Compass
The ‘normal’ compass is the one found in 
contemporary school geometry boxes. This 
compass ‘remembers’ the distance between its 
steady and adjustable legs when the ‘hinge’ is 
screwed tight (Figure 2). 

 

Figure 2: Basic parts of a ‘normal’ compass

If the hinge is loosened, the legs of the compass 
will ‘collapse’ together when they are lifted from 
the paper. In this case, the compass cannot 
‘remember’ the distance between the two legs. 
This then becomes Euclid’s collapsible compass. 
Euclid showed that the straight edge and 
collapsible compass can perform the job of a 
‘normal’ compass in terms of reproducing a given 
length at a different location [1 pp. 244-246]. 
We therefore, use the word ‘compass’ to refer to 
a ‘normal’ compass hereafter.

2.3 Protractor
The protractor is used to construct and measure 
angles (Figure 3). This instrument from the 
Birkhoff-Beatley toolkit has no direct equivalent 
in Euclid’s toolkit.

Figure 3: The protractor

Like the ruler, the protractor too is assumed 
to be marked with infinite resolution and can 
therefore be used to measure/construct any angle.

3. The Great Indian Rope Trick
Let us now see how the rope can be used as 
a geometrical instrument. In the Shulbasutra 
context, geometrical constructions were used 
to build life-size architectural structures with 
dimensions up to a few tens of metres. However, 
the geometrical principles involved in these 
constructions are also valid at smaller scales, just 
as those of Euclid or Birkhoff-Beatley are valid at 
scales larger than a sheet of paper.

3.1 Rope as a ‘Markable’ Straight Edge
A rope stretched taut forms a straight line. 
Thus, to construct a straight line between any 
two points on the ground, we simply stretch a 
rope taut between the two points and use it as 
a straight edge (Figure 4). Further, the distance 
between the two points can be marked by tying 
knots at the appropriate locations on the rope. 
In contrast, on Euclid’s straight edge we are not 
allowed to make any markings to record a length.

 

Figure 4: Rope as a straight edge between points 1 and 2

2  If you have a ruler marked only at integer lengths, you can only measure lengths such as 1 unit, 2 units, 3 units… Or, if you have 
a ruler marked only at half-integer lengths, you can only measure lengths such as 0.5 units, 1 unit, 1.5 units… B & B take their 
ruler to have infinite resolution. You can measure any length with it, rational or irrational. 
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We assume that our rope based geometrical 
constructions are being performed over ‘level’ 
ground. This is equivalent to assuming that the 
Euclid or the Birkhoff-Beatley toolkit based 
constructions are being performed on a ‘plane’ 
sheet of paper.

3.2 Rope as a Compass
Let us say that we are given two points. One point 
marks the desired centre of the circle while the 
distance between the points is the desired radius. 
We can now stretch out a rope between them and 
mark it corresponding to the two points. If the 
point of the rope corresponding to the centre of 
the circle is now used as a pivot as we walk around 
with the rope stretched taut along the ground, the 
other mark on the rope will describe a circle on 
the ground as shown in Figure 5.

 

Figure 5: Using a rope to make a circle

Since the rope can be marked, it can ‘remember’ 
a distance and function as a ‘normal’ compass.

4. Unique Rope Constructions 
The ability to use the rope as a straight edge and 
as a compass means that it is at least as good as 
Euclid’s toolkit for geometrical constructions. 
Additionally, the flexibility of the rope, coupled 
with the ability to mark it, allows some alternatives 
to Euclidean constructions as well as some 
constructions that are impossible with the rigid 
instruments of the Euclid and Birkhoff-Beatley 
toolkits. We look at some such constructions here.

4.1 Multiples and Fractions of a Length
The Shulbasutras describe several constructions 
requiring the division of a finite straight line into 
a number of equal parts but do not explain how 

this division is to be done [3 pp. 41–42]. That 
may be because with a rope, both multiplication 
and division of a length by any natural number is 
a fairly intuitive construction.

Figure 6 illustrates the multiplication of a given 
length. If L be the length marked off by points 
‘1’ and ‘2’ on the rope, then the points ‘1’ and 
‘3’ will be 2L apart while the points ‘1’ and ‘4’ 
will be 3L apart when the rope is unfolded and 
stretched taut again.

 

Figure 6: Multiplying a given length

Similarly, Figure 7 shows how a length can be 
divided. The division of L by 2 can be achieved 
in one shot by making the fold at 'a' such that 
the marks ‘1’ and ‘2’ align, with each of the 
folded sections stretched taut. When the rope is 
unfolded and stretched out again, the distances 
from ‘1’ to ‘a’ and from ‘a’ to ‘2’ will each be L/2.

Figure 7: Dividing a given length

The division of L by 3 takes some ‘tuning’. We 
need to make two folds between the ‘1’ and 
‘2’ marks and adjust them such that one fold 
each aligns with these marks while keeping each 
folded section of the rope stretched taut. In 
Figure 7, these fold locations have been marked 
as ‘b’ and ‘c’. Then, the distances ‘1’ to ‘b’ or ‘b’ to 
‘c’ or ‘c’ to ‘2’ are each L/3.
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In theory, this technique can be used to multiply 
or divide a length by any natural number N 
using N-1 folds. Consequently, any rational 
multiple of the length L can be obtained by this 
technique.

It is also possible to find the square root of 
a given length. This can be done by using 
the procedure set out in the Shulbasutras to 
construct a square that is equal in area to a 
given rectangle [3 pp. 83–85, 4]. Following this 
technique for a rectangle having the given length 
and unit breadth, we will get a square whose side 
is the square root of the given length.

4.2 Multiples and Fractions of an Angle
The rope can be used to measure curved lengths. 
In practice, the curves can be marked as a groove 
in the ground in which the rope can be fit and 
the length of the curve marked on it. This idea 
can be applied to a circle to convert a given angle 
θ° into an arc-length as shown in Figure 8 (using 
the property that angle (in radians) = arc/radius).

 

Figure 8: Constructing rational multiple of given angle

We use the vertex of the angle as the centre and 
the length of one of the arms forming the angle 
as radius to construct a circle around which 
we fit a rope. We mark the rope where the two 
arms of the angle (extended if required) cut the 
circle. This arc length can then be multiplied by 
any rational factor m/n to construct the angle 
(mθ°)/n  (mod 360).

Apart from rational multiples, square root length 
constructions can also be used for corresponding 
irrational angle constructions.

4.3 Conic Sections
Though this has not been discussed in the 
Shulbasutras and is probably a later discovery, 
the rope enables the construction of ellipses, 
hyperbolas and parabolas [5]. This cannot be 
achieved by either the Euclid or the Birkhoff-
Beatley toolkits.

Figure 9 illustrates the construction of an ellipse 
using a single rope F1MF2 of length R. We 
exploit the property of the ellipse that any point 
on it is such that the sum of its distance from 
two fixed points (the foci F1 and F2 of the ellipse) 
is some constant. 

 

Figure 9: Construction of an ellipse

The marker M traces out the ellipse as it is moved 
around while keeping the two sections of the 
rope, F1M and F2M, stretched taut. Though the 
location of M along the length of the rope is 
not fixed, F1M + F2M will always equal the total 
length R of the rope, which is a constant. 

Figure 10 shows a hyperbola construction using 
ropes. A taut rope F1P of length R is used as a 
straight edge pivoting at F1 while another rope  
F2MP of length L is used as a flexible rope which 
is folded into two sections of variable lengths PM 
and MF2 by the marker M. The points F1 and F2 
are fixed. The construction relies on the property 
of the hyperbola that all points on it are such 
that the difference in their distances from two 
fixed points (the foci F1 and F2) is some constant.

Figure 10: Construction of a hyperbola
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As we can see in Figure 10, the length of the 
section PM of the flexible rope that lies along F1P 
is L – d2 where d2 is the distance of the marker 
M from the focus F2. Further, PM is also equal 
to R – d1 where d1 is the distance of M from the 
focus F1. Thus, as F1 P rotates, the position of M 
varies, but we always have PM = L – d2 = R – d1, 
i.e., d1 – d2 = R – L, a constant. This is exactly the 
condition that defines a hyperbola. 

The construction needs to be mirrored to get 
both halves of the hyperbola. In practice, it is 
far more convenient to use a rigid straight edge 
instead of a rope for F1P. 

Lastly, Figure 11 shows the construction of a 
parabola. There are two parallel (horizontal) fixed 
ropes on which a third (vertical) movable rope AB 
gets pushed (right or left) by the marker M placed 
on the flexible rope FMA. For A and B to always 
lie on the fixed horizontal ropes, AB must move 
parallel to its own previous position. During this 
movement, the section AM of the flexible rope 
lying along AB will be of length R – r where R is 
the total length of the flexible rope, and r is the 
distance of the marker M from the fixed point 
F, the focus of the parabola. The length FM = r 
makes up the remaining part of the flexible rope.

We now define the ‘directrix’ as a straight line 
parallel to the two fixed horizontal ropes and at a 

distance R below the top horizontal rope. Then, 
the distance between M and the directrix must 
also be r. Thus, as the marker M pushes the rope 
AB to the right or left, it will describe the locus 
of points which are equidistant from F and the 
directrix, which is the definition of a parabola. 

Again, in practice, the mechanical set-up is far 
more convenient if we use rigid materials for the 
fixed parallel ropes and movable vertical rope. 

4.4 Practical considerations
The rope based geometrical constructions described 
here would ideally need ropes of zero thickness 
and infinite flexibility. In practice, therefore, 
these constructions will have inaccuracies. Also, 
as mentioned earlier, though the mathematical 
principles involved in these constructions are 
scalable, carrying out rope-based constructions for 
dimensions of a few centimetres or smaller would 
involve significant handling difficulties. For all 
such cases, a thread instead of a rope may work 
better. Another source of inaccuracies could be 
some inherent elasticity of the rope.

Having reviewed some uses of the rope as a 
geometrical instrument, we will analyze how it 
compares with the Euclid and Birkhoff-Beatley 
toolkits in the next part of the article.

Figure 11: Construction of a parabola
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