
Triangles with one 
angle equal to another 
are familiar objects; 
a lot is known about 
them. What can be 
said about triangles 
in which one angle 
is twice another? 
Can such triangles be 
characterised in any 
other way? We explore 
these questions in 
this article.
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We have the following striking and compact result
about triangles in which one angle is twice
another (see Figure 1).

Theorem 1. In any △ABC, the following is true:

∡A = 2∡B ⇐⇒ a2 = b(b+ c). (1)
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Figure 1. Triangle ABC with ∡A = 2∡B

Observe that the result is an “if and only if ” statement. We
consider the forward and reverse implications separately.

We offer two different kinds of proofs of the result. It is
interesting that the reverse implication presents a greater
challenge using either approach.

Proof using trigonometry. We make use of the sine rule for
triangles and the fact that supplementary angles have equal
sine values.

Forward implication. We must prove that if ∡A = 2∡B,
then a2 = b(b+ c). Let ∡B = t; then ∡A = 2t and
∡C = 180◦ − 3t. We therefore have:

a
sin 2t

=
b

sin t
=

c
sin 3t

. (2)

1

Keywords: Triangles, similarity, trigonometry, proof, trigonometric 
identity

Triangles with One 
Angle Twice Another
SHAILESH SHIRALI



63Azim Premji University At Right Angles, March 2022

Multiplying through by sin t and remembering the double angle and triple angle identities, we get:

a
2 cos t

= b = c
3 − 4 sin2 t

.

Since 3 − 4 sin2 t = 4 cos2 t− 1, we have:

2 cos t = a
b
, 4 cos2 t− 1 =

c
b
. (3)

We may easily eliminate t from the above two equalities:

c
b
=

a2

b2 − 1, ∴ bc = a2 − b2,

and so

a2 = b(b+ c). (4)

Reverse implication. We must prove that if a2 = b(b+ c), then ∡A = 2∡B. Invoking the sine rule again,
the given equality leads to

sin2 A = sinB · (sinB+ sinC),

∴ sin2 A− sin2 B = sinB · sinC. (5)

We now invoke the following striking and beautiful trigonometric identity (which looks extremely
surprising at first glance, as it looks just like the “difference of two squares” identity):

sin2 A− sin2 B = sin(A+ B) · sin(A− B).

We also have sin(A+ B) = sinC. Hence from (5) we get sinB · sinC = sinC · sin(A− B), and so (since
sinC ̸= 0),

sinB = sin(A− B). (6)

From (6) the following two possibilities arise:

• the angles B and A− B are equal; OR

• the angles B and A− B are supplementary.

The second possibility leads to A = 180◦, which is absurd. Therefore we must have B = A− B, which
leads to A = 2B, as required. □

Proof using ‘pure’ geometry. Examining the form of a2 = b(b+ c), we are led to expect that the proof will
involve working with suitably constructed similar triangles. This is because the expression a2 = b(b+ c)
may be written as a/b = (b+ c)/a, and this immediately suggests looking for a pair of similar triangles.
(Actually, there is another possible line of inquiry, but we will say something about this at the end.)

Forward implication. We must prove that if ∡A = 2∡B, then a2 = b(b+ c). Since A = 2B, it makes
sense to draw the angle bisector of ∡BAC, as this will give us an angle equal to ∡CBA. Drawing this angle
bisector, we obtain Figure 2. The angle bisector meets side CB at D. Let CD = x; then DB = a− x.
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Figure 2. Triangle ABC with ∡A = 2∡B

In Figure 2, △DAB is isosceles, so DA = DB, i.e., d = a− x. Also, ∡CDA = 2t (note that it is an exterior
angle to △DAB). This means that △CAD has the same set of angles as △CBA (namely: 180◦ − 3t, t, 2t).
The two triangles are therefore similar to each other, so their sides (namely: {x, b, d} and {b, a, c},
respectively) must be in proportion. That is:

x
b
=

b
a
=

a− x
c

. (7)

These equalities give:

x = b2

a
, ∴ b

a
=

a− b2/a
c

=
a2 − b2

ac
,

and therefore

b = a2 − b2

c
, ∴ a2 = b2 + bc = b(b+ c). (8)

Reverse implication. This presents a greater challenge. Starting with the expression a2 = b(b+ c), we must
construct a pair of similar triangles. The challenge here is to make geometric sense of the expression b+ c,
which is a sum of two lengths which do not even lie in a straight line. We shall solve the problem using a
suitable construction (Figure 3).

Extend side CA of △ABC to E such that AE = AB, i.e., AE = c. This results in a segment CE which has
length b+ c. Join BE. Now write the given relation a2 = b(b+ c) as

a
b
=

b+ c
a

.

With reference to Figure 3, this states that

CB
CA

=
CE
CB

. (9)

Relation (9) immediately tells us that

△CBA ∼ △CEB, (10)

(note the order in which we have labelled the vertices—it indicates the vertex correspondence) and hence
that we must have the following angle equalities:

∡CBA = ∡CEB, (11)
∡CAB = ∡CBE. (12)
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Figure 3. Triangle ABC with a2 = b(b+ c)

Relation (11) tells us that ∡ABE = t (since AE = c = AB), and therefore that ∡CBE = 2t.

Relation (12) combined with the above finding tells us that ∡CAB = 2t.

Hence ∡CAB = 2∡CBA, i.e., ∡A = 2∡B. □

A pure geometry solution using a single figure. Examining the above two proofs (for the forward and
reverse implications), the reader will notice that we have used different constructions for the two proofs.
This may seem unsatisfactory. Is it possible to use a single figure to prove both the implications? We
successfully answer this challenge. (It turns out to be simpler than expected!)

Figure 4 shows △ABC in which we extend side CA beyond A to E so that AE = AB. We then draw
△ABE. Since AE = AB, we have ∡ABE = ∡AEB. We now consider the claim. The reverse implication
has already been dealt with above, so we consider only the forward implication.
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Figure 4. Triangle ABC with CA extended to E so that AE = AB

Suppose that ∡A = 2∡B, i.e., ∡A = 2t. Since ∡CAB = ∡ABE+ ∡AEB = 2∡AEB, it follows that
∡AEB = t = ∡ABE.
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Observing that the angles of △CEB are identical to those of △CBA (namely: 180◦ − 3t, t, 2t), we see that
the two triangles are similar to each other. Therefore their sides are in proportion. From this it follows that

a
b
=

b+ c
a

. (13)

Simplifying (13), we obtain a2 = b(b+ c), as required. □

Postscript: A trigonometric analysis that yields a strange conclusion. In the same spirit as the
geometric analysis presented above, can we do a trigonometric analysis that yields both the forward and
reverse implications in a single movement? This too is possible, but there is a slight twist. The ‘twist’ occurs
with the isosceles case.

Consider first the case when the triangle has ∡B = ∡C (i.e., b = c) and ∡A = 2∡B. That is, we have
∡A = 2∡B = 2∡C. The triangle is now isosceles right-angled, with angles 90◦, 45◦, 45◦. So we have
a/b =

√
2 = a/c, and the relation a2 = b(b+ c) holds.

Conversely, if we have b = c together with a2 = b(b+ c), then a2 = 2b2, so a/b =
√

2 = a/c, leading to
the triangle having angles 90◦, 45◦, 45◦, in which case the relation ∡A = 2∡B holds.

Therefore, the case with b = c satisfies the conditions of the theorem and need not be considered further.
In the analysis below, we explicitly exclude the case when ∡B = ∡C. We have:

∡A = 2∡B ⇐⇒ sinA = sin 2B (because we have ∡B ̸= ∡C)
⇐⇒ sinA = 2 sinB · cosB

⇐⇒ a
b
= 2 cosB (by invoking the sine rule)

⇐⇒ a
b
=

a2 + c2 − b2

ac
(by invoking the cosine rule)

⇐⇒ a2c− b
(
a2 + c2 − b2) = 0

⇐⇒ a2(c− b)− b
(
c2 − b2) = 0

⇐⇒ (c− b) ·
(
a2 − b(b+ c)

)
= 0

⇐⇒ a2 − b(b+ c) = 0 (because we have b ̸= c).

Therefore we have ∡A = 2∡B ⇐⇒ a2 = b(b+ c), and the theorem is proved. □
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