Finding the Base Angles of a Triangle

MOSES MAKOBE

onsider a $\triangle ABC$ in which the following are specified: $\measuredangle A$ (i.e., the apex angle *BAC*), the length *a* of the base *BC*, and the length *h* of the altitude from *A* to *BC*.

Is it possible to find expressions for the two base angles, $\angle B$ and $\angle C$, in terms of *A*, *a*, *h*? We do so using trigonometry.

Let *AD* be the perpendicular from vertex *A* to *BC*, and let BD = x, DC = a - x. (For convenience, we assume that $\measuredangle B$ and $\measuredangle C$ are acute, which means that *D* lies on the side and not on the extension of the side. We also assume that the triangle is not right-angled.)

Keywords: trigonometry, quadratics, problem solving

From right-angled triangles ABD and ACD, we have:

$$\tan B = \frac{h}{x}, \quad \tan C = \frac{h}{a-x}.$$
 (1)

Hence:

$$x = \frac{h}{\tan B}, \quad a - x = \frac{h}{\tan C} = -\frac{h}{\tan(A+B)},$$
(2)

where the last step comes from the fact that $C = 180^{\circ} - (A + B)$. Hence:

$$\frac{a}{b} = \frac{\tan(A+B) - \tan B}{\tan B \cdot \tan(A+B)}$$
$$= \left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} - \tan B\right) \div \tan B \cdot \left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$$
$$= \frac{\tan A + \tan A \cdot \tan^2 B}{\tan B \cdot (\tan A + \tan B)}.$$

From the last relation we obtain, by cross-multiplication:

$$(a - h \tan A) \tan^2 B + (a \tan A) \tan B - h \tan A = 0.$$
(3)

Here, (3) can be regarded as a quadratic equation in $\tan B$; the coefficients are known quantities, as they have been expressed in terms of *a*, *h*, *A*. Solving the equation, we get:

$$\tan B = \frac{-a \tan A \pm \sqrt{a^2 \tan^2 A + 4 \left(a - h \tan A\right) \cdot h \tan A}}{2 \left(a - h \tan A\right)}.$$
(4)

We have not attempted to simplify the expression in (4). An equivalent way of expressing the same result, in terms of sines and cosines, is the following:

$$\tan B = \frac{-a\sin A \pm \sqrt{a^2\sin^2 A + 4(a\cos A - h\sin A) \cdot h\sin A}}{2(a\cos A - h\sin A)}.$$
(5)

Note the plus-minus sign. The two values given by the formula correspond to the values of $\tan B$ and $\tan C$ respectively. (There is an obvious symmetry in the problem between B and C.)

If the triangle is right-angled, then we may encounter fractions with zero denominator, so we need to be careful. We look at this possibility below.

The case when $\mathbf{A} = 90^{\circ}$. In this case, $\angle B + \angle C = 90^{\circ}$, so $\tan B \cdot \tan C = 1$. Therefore (2) assumes the form

$$x = \frac{h}{\tan B}, \quad a - x = \frac{h}{\tan C} = h \tan B, \quad \therefore \quad x(a - x) = h^2.$$
(6)

The quadratic equation $x(a - x) = h^2$ may be solved for *x*, and from this we get tan *B*:

$$x(a-x) = h^2, \quad \therefore \quad x = \frac{a \pm \sqrt{a^2 - 4h^2}}{2},$$
$$\therefore \quad \tan B = \frac{2h}{a \pm \sqrt{a^2 - 4h^2}}.$$
(7)

Rationalising, we get:

$$\tan B = \frac{a \mp \sqrt{a^2 - 4h^2}}{2h}.$$
(8)

As earlier, the two values given by the formula correspond to the values of $\tan B$ and $\tan C$ respectively. (Note that the product of the two values is equal to 1, as it should be.)

The case when a denominator of 0 occurs in (4) and (5). This will happen when $a = h \tan A$ (equivalently, $a \cos A = h \sin A$). This means, clearly, that either $\measuredangle B = 90^\circ$ or $\measuredangle C = 90^\circ$.

References

- 1. Bradley M, et al, 2012, Platinum mathematics grade 11 learner's book, Cape Town, Maskew Miller Longman
- 2. Aird J, et al, 2013, Clever Keeping Maths Simple grade 12 learner's book, Northlands, MacMillan South Africa

LETUKU MOSES MAKOBE is the HOD for Faculty of Sciences at Makwe Senior Secondary School, Limpopo province, RSA. He teaches Mathematics and Physical sciences for grades 10-12. He is the founder of the project 'Makobe Mathematics Club' which provides free lessons in mathematics and the sciences to underprivileged learners. He holds a post graduate diploma in public management from Dr. C N Phatudi College of Education, UNISA (CIMSTE), Regenesys Business School. He is an active contributor of articles to AMESA. He may be contacted at makobe.moses@gmail.com.