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Abstract: Conservation of forests outside protected areas is essential for maintaining forest
connectivity, which largely depends on the effectiveness of local institutions. In this study, we
use Landsat data to explore the relationship between vegetation structure and forest management
institutions, in order to assess the efficacy of local institutions in management of forests outside
protected areas. These forests form part of an important tiger corridor in Eastern Maharashtra, India.
We assessed forest condition using 450 randomly placed 10 m radius circular plots in forest patches
of villages with and without local institutions, to understand the impact of these institutions on
forest vegetation. Tree density and species richness were significantly different between villages with
and without local forest institutions, but there was no difference in tree biomass. We also found a
significant difference in the relationship between tree density and NDVI between villages with and
without local forest institutions. However, the relationship between species richness and NDVI did
not differ significantly. The methods proposed by this study evaluate the status of forest management
in a forest corridor using remotely sensed data and could be effectively used to identify the extent of
vegetation health and management status.

Keywords: biodiversity; quantile regression; remote sensing; tree biodiversity

1. Introduction

Ecological research is vital for establishing effective management and conservation policies for the
proper governance of natural resources [1]. In particular, evidence-based data on the effectiveness of
conservation management typically requires a solid foundation of in-depth fieldwork. Although this
is very important, field data collection is a time-consuming and expensive process [2]. It can often be
very difficult to acquire field data in remote and inaccessible places, in areas with challenging terrain,
or in areas of ongoing conflict and turmoil that may be of high ecological importance.

Remote sensing can be a valuable aid in such contexts. Remote sensing studies are conducted with
the aid of satellite images whereas ecological studies involve in-depth field work, which may or may
not cover large spatial regions [2]. Predictions based solely on ecological field studies are hence spatially
bounded, and often need to be complemented with broad-scale geographic data for extrapolation to
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the landscape or regional scale [3]. A combination of remote sensing and field-based ecology research
has contributed immensely towards understanding ecological processes, since they facilitate research
at moderate to large spatial extents in a cost-effective manner [4,5]. Although ecological field based
research is not replaceable by remote sensing methods, the two methods complement each other for
better understanding of ecological processes. This can further be incorporated in conservation and
management plans [6].

Ecological variability (heterogeneity and biodiversity) forms an important indicator of ecosystem
function and ecosystem health [7]. Several studies have been carried out to find the relationship
between remotely sensed spectral heterogeneity and ecological variability [8,9]. The Normalized
Difference Vegetation Index (NDVI) and other vegetation indices have frequently been used as proxies
for vegetation health and structure [10–12]. Recent studies have also demonstrated the potential
for spectral heterogeneity to be used as a proxy for alpha and beta-diversity of an area, helping in
the characterization of biodiversity at larger spatial scales [8,13]. However, ecological processes are
complex and the relationship with spectral data may not be very straightforward. For example, it is
very difficult to assess understory vegetation variability through optical remote sensing, as such
images typically capture information largely from the upper canopy. Active remote sensing such as
LiDAR (Light Detection And Ranging) technology could provide solutions to this challenge [14] but
typically, such images are expensive and often difficult to acquire, particularly in many biodiverse
tropical environments [15]. Thus, so far, most studies have been based on moderate resolution images
such as the Landsat data archive, which is freely available [16].

Vegetation structure and variability arises not only as a consequence of ecological and bio-physical
processes but is also shaped by social, economic and institutional processes [17–19]. Studies from
Europe have shown that the species richness, number of dead logs and soil nitrogen are higher in
unmanaged forest patches compared to managed forest patches and that the forest patches differ in
forest structural stages such as understory growth [20,21]. Institutional processes play an important
role in impacting vegetation structure and variability, such as management of forest patches within
as well as outside protected areas [22,23]. In this context, most research addressing the impact
of institutions on forest biodiversity and variability has focused on state-administered protected
areas [24–26]. Globally, a large extent of forests lies outside protected areas and is managed by various
institutional structures. Local community institutions play an important role in maintaining these
forest patches [27].

India harbours large, connected forest areas with high plant and animal diversity. A large
proportion of India’s forest land is located outside the country’s protected area network [25,28].
Legally, forest patches outside protected areas belong to the state. These forest patches are under
the formal control of the Indian Forest Department, but at smaller scales may be managed by local
communities through informal institutions such as sacred groves, as well as by traditional norms of
local communities that relate to hunting and harvesting of forest resources [29]. Recently, through Joint
Forest Management and the Indian Forest Rights Act of 2006, local communities have also received
some de jure (formal) rights to access and maintain forest patches [22,30]. However, forests outside
protected areas are undergoing rapid changes, given their location in densely populated landscapes
and face economic and political pressure [25,28,31]. Conservation of these forest patches is very
important for social reasons such as livelihood dependence of local communities, as well as ecological
reasons including wildlife protection.

So far, remotely sensed data has been widely used to classify different types of forest and to
assess changes in the forest density, diversity and distribution [4,32]. However, understanding the
role of local institutions with the aid of remote sensing is comparatively less explored. In this study,
we attempt to develop a better understanding of the relationship between spectral and ecological
variability under the influence of local institutions. This can help in extrapolating the relationship
between institution and vegetation to the regional level so as to provide policy inputs.

The location of this research is in a forest corridor that connects important protected areas such
as the Pench Tiger Reserve and the Tadoba-Andhari Tiger Reserve, among several others, within the
eastern Maharashtra region. We focus on the forest outside the tiger reserves that are potential corridors
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for biodiversity [33]. In this landscape, forest patches are managed by diverse institutional settings
that range from active involvement of local communities in forest management, to co-management
by local communities and the forest department, and management entirely by the forest department,
without any participation from local communities. Several common property resource studies have
shown that there is a need for local participation in order to achieve larger conservation goals [34–37].
Previous research in this region has argued that community institutions are important for protection
outside protected areas [37]. However, there has been limited assessment of this hypothesis.

In this study, we use Landsat imagery to understand the relationship between spectral
heterogeneity and vegetation variability in the presence or absence of local institutions.

The specific objectives are:

1. To explore the relationship between remotely-sensed spectral variables such as the NDVI, and
attributes of forest vegetation, in particular of species richness, tree density, and biomass.

2. To investigate how management by local (community) institutions influences vegetation diversity.
3. To examine whether the relationship between remotely-sensed spectral variables and attributes

of forest vegetation diversity differ in forests managed with and without the participation of
local communities.

2. Material and Methods

2.1. Study Area

This study was carried out in five forest divisions in Eastern Maharashtra, collectively known
as “Vidarbha” (Figure 1). Vidarbha is an underdeveloped region within the state of Maharashtra that
has rich dry tropical forest cover and high population density. There are nine protected areas in the
selected region with two Tiger Reserves, six Wildlife Sanctuaries and one National Park (Figure 1).
Total area under forest cover in the eight forest divisions is around 11,000 km2, out of which only
around 1350 km2 is covered by the protected areas. The forest department maintains the forests outside
protected areas according to categories such as Reserve Forest and Protected Forest. At times, these are
also handed over to the Forest Development Corporation of Maharashtra for management (Table 1).
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Table 1. Types of forest management regimes outside protected areas, with a description of rules governing use and access to forest products.

Different Types of
Management Regimes Rules

Reserve Forest (RF)

RF patches are legally government property, and under control of government officials. Within RFs, plantation, beat cutting (cut
down trees based on predetermined range of DBH in the selected coupe/beat for plantation) and other forestry practices are
conducted according to 5 year plans of the forest department. There are restrictions on logging and hunting. Local residents can
collect fuelwood only through head-loads. Taking bullock-carts, bicycles and axes for wood collection is prohibited.

Forest Development
Corporation of
Maharashtra (FDCM)

Some RF compartments are leased to the Forest Development Corporation of Maharashtra for afforestation and timber extraction
and sale. Local community work in FDCM forests for daily wages is permitted, but workers are not allowed to access forest
resources for their livelihood. They are sometimes allowed to use resources that are not commercially useful for the
FDCM department.

Protected Forest (PF)
PFs are similar to RFs; however, there are fewer restrictions on village residents in terms of using the former as compared to the
latter. The term PF is sometimes interchangeably used with village forest. Village residents are allowed to collect fuelwood, timber
and other NTFPs.

Community Forest
Management (CFM)

Some patches of RFs and PFs are informally managed by local communities, who formulate rules and regulations on use and
management. Some of these community associations later received formal recognition through Joint Forest Management (JFM),
with forest patches continuing to be managed by the local community but with limited authority, under the overall control of the
Forest Department. Recently, some local communities have claimed rights over forest patches through the Community Forest
Rights section of the Forest Rights Act (FRA).
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Approximately thirty-three percent of the population [38] belongs to tribal communities and lives
in close proximity to the forest. The tribal as well as non-tribal communities are highly dependent on
forests for subsistence and economic livelihoods. Thus, it is very important to understand the interface
between local communities, forest use, and conservation of the forest corridor in this region [39]. At the
village level, the communities have informally devised rules and regulations for harvesting, managing
and protecting the forest resources. At the same time, initiatives of the state such as Joint Forest
Management (JFM) schemes and the Forest Rights Act provide limited recognition of rights to local
communities for utilization and management of forest patches in their vicinity. Understanding the
interplay between these institutions and extent of vegetation within this corridor is very important for
maintaining a viable wildlife population. Remote sensing methods provide considerable assistance for
covering a regional scale of study.

2.2. Field Data Collection

Fieldwork was carried out from October 2013 to February 2014 (during winter), in eight forest
divisions (administrative categories) namely Nagpur, Bhandara, Gondia, Brahmapuri, Wadsa,
Gadchiroli, Chandrapur buffer and Chandrapur non-buffer. In order to separately manage some
forests within the buffer region of Tadoba-Andhari Tiger Reserve (TATR) under the eco-development
policy, the Chandrapur forest division was recently divided into buffer and non-buffer forest divisions.

Two villages were selected in each of the eight forest divisions. The snowball sampling method
was used to gather information from forest department officials, local NGOs and other key informants
regarding local forest institutions. In order to focus on institutional effects, we purposefully selected
the villages in such a way that they were similar in terms of population, distance to forest, proximity
to market and town, and other facilities. In villages where we found the active participation of local
residents in forest management, or where there was joint action by local residents and the forest
department in monitoring/managing the forest resource, institutions were categorized as ‘Present’.
In villages where peoples’ participation was lacking, either due to the dominance of management by
the forest department or with no management of forest resources either by people or by the forest
department, institutions were categorized as ‘Absent’. As the Chandrapur Buffer Forest Division has no
village without local forest institutions, we have selected 15 villages for this study. Involvement of local
people in forest management was subjective and we needed thorough information. Therefore, snowball
and purposive sampling methods were used to identify the villages.

Within each of the selected 15 villages, tree density, species richness and tree biomass were
estimated using 30 circular forest plots (i.e., a total of 450 plots across the study area) of 10 m radius,
within which smaller nested circular plots of 3 m and 1 m radii were used to assess sapling and seedling
density and diversity (Figure 2). To select the location of the circular plots, the forest boundaries of
each village were mapped and divided into 60 m ˆ 60 m grids, so that the plots were at least be
60 m or two pixels (in case of Landsat image) apart from each other. Then, we randomly selected the
30 grids using the vector tool operation of QGIS [40]. We located each plot in the field by tracking the
centroid of each selected grid using a GPS device (GARMIN eTrex Vista, Olathe, KS, USA). We laid
circular plots by measuring 10 m radii around the centroid. The projection used was the geographic
latitude/longitude World Geodetic System 1984 (WGS84).

In 10 m circular plots, the GBH (Girth at Breast Height) and height of all trees, shrubs and climber
species were recorded for all individuals with GBH of more than 10 cm. In 3 m circular plots, the
GBH and height of all trees, shrubs, and climber species were recorded for all individuals with GBH
less than 10 cm and height more than 1 m. In 1 m circular plots, species identity was recorded for all
trees, shrubs, climber species, and herb individuals with height less than 1 m. Later, DBH (Diameter at
Breast height) was calculated using GBH. In order to avoid seasonal variation that mostly affects shrub
and herb species composition, the data was collected in winter across all villages.

We calculated the tree density, species richness and biomass for each plot. The biomass was
calculated using the formula provided by Chave et al. [41], which accounts for tree taper and in which
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wood density is multiplied by the volume of the cylinder. Wood density data were obtained from
Zanne et al. [42] and the Ecosystems Ecology laboratory of the National Centre for Biological Sciences
(NCBS), Bangalore, India.
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Figure 2. Circular plot method for sampling tree, sapling and seedling in each surveyed village.

2.3. Remotely Sensed Data

Landsat 8 surface reflectance imagery with a spatial resolution of 30 m, of 14th December 2013
acquisition date were downloaded from the USGS website, to assess the relationship between spectral
value and vegetation variability across different sites. This time frame corresponds with the winter
time frame (October–February) during which field data was collected. The size of each plot i.e., 10 m
radius circular plot is less than the pixel size of 30 m resolution of Landsat 8 images. In order to
account for the positional error of around 5–8 m radius, a 3 ˆ 3 pixel window around the central pixel
of plot, location was used to calculate the mean and standard deviation of selected indices and bands.
This method was used to extract value for Tasseled Cap indices for wetness [43], NDVI and standard
deviation of NDVI (SD-NDVI). NDVI is derived from red and infrared bands. NDVI values range
between ´1 to +1, where high values indicate greener vegetation. Image processing software, ERDAS
Imagine™ (9.2, ERDAS Inc., Norcross, GA, USA) was used to calculate NDVI and SD-NDVI; and
GRASS GIS 7.0.0RC2 (GRASS Development Team, Michele all'Adige, Italy) was used for Tasseled Cap
indices for Wetness.

2.4. Data Analysis

We used quantile regression at very high quantile values (tau = 0.95) to describe the relationship
between NDVI and tree density at plots. NDVI is a measure of greenness (or absorption of solar
radiation by chlorophyll) and is naturally correlated with the live vegetation cover. This may include
any form of vegetation such as grasses, shrubs, or trees. Therefore, the value of NDVI is not limited
by tree density alone. In such a case, ordinary least squares regression that describes the relationship
between mean of tree density and NDVI is not appropriate. By fitting regression only to higher
quantiles of the data, we restrict the prediction to the slice of the data where most NDVI is contributed
by standing tree vegetation. Quantile regression is extensively used in various ecological studies, as it
helps in estimating the functional relationship between the variables at different quantile values [13,44–46].
In ecological studies, it is very difficult to measure all the variables causing an effect, and threshold
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values are often better described than total variation. Therefore, estimating multiple regression
slopes at different quantiles provides greater understanding as compared to ordinary least squares
regression [44].

The eight forest divisions within which the villages were present had identical modes of operation
and did not have any specific differences in the policies they were implementing. Therefore, while the
villages were nested within forest divisions, we did not expect this to have an effect in addition to local
conditions. To confirm this assumption we compared tree density, species richness and tree biomass
of between villages within each forest division using Mann–Whitney U test (Table A1). In addition,
we also compared the same variables between villages, with and without institutions, but pooled
across all forest divisions. We expected that the effect of local institutions should be consistent between
these two comparisons.

We compared the relationship between spectral and plant community data between villages with
and without institutions using regression at a high quantile (0.95). As spectral heterogeneity is a good
proxy for beta diversity [46], we also compared the relationship between spectral dissimilarity and
beta-diversity in the institution and non-institution villages. The analysis was performed in R 3.2.2
(R Core Team, Vienna, Austria) using package “quantreg version 5.11” for quantile regression [47] and
package “vegan version 2.3-1” [48] for dissimilarity indices.

3. Results

3.1. Relationship between Plant Species and Spectral Diversity

Tree density and richness showed a clear positive relationship with spectral indices and negative
relationship with spectral heterogeneity, while the relationship between biomass and the spectral
indices was much weaker in both cases. Variance of the response variables also increased with the
spectral indices. This is most likely due to the nature of the relationship between spectral indices and
tree vegetation (Figure 3).
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Tree density, species richness, and biomass were significantly related to spectral values in both
quantile and linear regression. Estimates of intercept took more extreme values (positive and negative),
and slopes were steeper in quantile regression compared to linear regression. Thus, the relationship
between attributes of vegetation and spectral indices varies with the quantile value, and the higher
quantiles have a stronger effect than the mean (Figure 3 and Table 2).

Table 2. Comparison of the results of quantile regression (0.95 tau) and linear regression for the
relationship of tree density, species richness and biomass with NDVI, SD–NDVI and wetness.

Variable Parameter
Quantile Regression (tau = 0.95) Linear Regression

Estimate p Value Estimate p Value

Tree density

Intercept: NDVI ´4.68 (˘7.9) 0.55 ´21.98 (˘3.0) <0.001***
Slope: NDVI 97.97 (˘11.29) <0.001 76.5 (˘4.6) <0.001***

Intercept: SD–NDVI 71.67 (˘ 2.5) <0.001 32.07 (˘0.9) <0.001***
Slope: SD–NDVI ´175.81 (˘46.6) <0.001 ´94.68 (˘17.5) <0.001***

Intercept: Wetness 80.22 (˘4.0) <0.001 45.29 (˘1.0) <0.001***
Slope: Wetness 296.36 (˘36.7) <0.001 236.9 (˘12.9) <0.001***

Species
richness

Intercept: NDVI ´4.47 (˘1.5) <0.001 ´2.65 (˘0.6) <0.001***
Slope: NDVI 24.57 (˘2.4) <0.001 11.85 (˘0.9) <0.001***

Intercept: SD–NDVI 13.57 (˘0.7) <0.001 5.86 (˘0.1) <0.001***
Slope: SD–NDVI ´26.89 (˘10.6) 0.01 ´16.65 (˘3.4) <0.001***

Intercept: Wetness 17.14 (˘0.6) <0.001 7.39 (˘0.2) <0.001***
Slope: Wetness 73.41 (˘7.1) <0.001 31.42 (˘2.7) <0.001***

Tree
biomass

Intercept: NDVI 29.5 (˘176.0) 0.80 ´57.82 (˘28.7) <0.001***
Slope: NDVI 647.52 (˘268.5) 0.01 326.11 (˘43.7) <0.001***

Intercept: SD–NDVI 432.06 (˘44.3) <0.001 155.87 (˘8.5) <0.001***
Slope: SD–NDVI 735.88 (˘988.7) 0.45 ´40.02 (˘154.6) 0.79

Intercept: Wetness 679.04 (˘31.5) <0.001 238.7 (˘10.1) <0.001***
Slope: Wetness 2911.19 (˘196.1) <0.001 1141.29 (˘121.9) <0.001***

Significance codes: *** 0.001.

3.2. Impact of Institutions on Plant Species Diversity

Species richness and tree density were higher in villages with institutions as compared to villages
without institutions (Figure 4a,b). However, the biomass was the same in different institution settings
(Figure 4c). On the other hand, regeneration was high in villages with institutions as compared to
villages without institutions (Figure 4d).
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Figure 4. (a) tree density (no. of trees/ha); (b) tree species richness; (c) tree biomass; and (d) frequency
of tree DBH in the forest patch of villages present and absent local forest institutions.

3.3. Relationship between Vegetation Diversity and Spectral Values in Presence and Absence of
Forest Institutions

In villages with institutions, the slope of relationship between NDVI and tree density was
flatter, and the intercept was higher (Figure 5a); none of the plots recorded an NDVI below 0.4.
In contrast, the intercept for villages without institutions was significantly lower as compared to that
with institutions (Table 3) and there were some plots that had NDVI below 0.4 (Figure 5a).
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(b) standard deviation of NDVI; (c) wetness index under presence or absence of local institutions.
The dashed line represents fitted values in villages without local institutions and the solid line is for
villages with local institutions.



ISPRS Int. J. Geo-Inf. 2016, 5, 117 10 of 16

Table 3. Results of quantile regression for tree density (tau = 0.95) in the villages with presence and
absence of the local forest institutions.

Predictor Variable Parameter Estimate p Value

NDVI

institutions present 28.93 (˘12.44) 0.02*
institutions absent ´53.51 (˘16.0) <0.001***

institutions present: NDVI 56.35 (˘22.3) 0.01**
institutions absent: NDVI 58.41 (˘27.5) 0.03*

SD–NDVI

institutions present 74.31 (˘7.8) <0.001***
institutions absent ´14.27 (˘8.3) 0.08¨

institutions present: SD–NDVI ´161.17 (˘155.8) 0.30
institutions absent: SD–NDVI ´28.73 (˘162.3) 0.85

Wetness

institutions present 79.31 (˘7.2) <0.001***
institutions absent ´3.21 (˘8.2) 0.69

institutions present: Wetness 212.71 (˘80.3) <0.001***
institutions absent: Wetness 129.53 (˘89.9) 0.15

Significance codes: *** 0.001, ** 0.01, * 0.05, ¨ 0.1, 1.

The relationship between tree density and SD-NDVI was significantly different in villages with
and without forest management institutions (Table 3 and Figure 5b). The relationship between tree
density and wetness was not significantly different in villages and without institutions (Table 3 and
Figure 5c).

The relationship between species richness and NDVI, SD-NDVI and wetness did not significantly
differ between villages with and without institutions (Figure 6 and Table 4). Thus it appears that
Landsat remote sensing is more sensitive to tree density, and less able to discern differences in
species richness.
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line represents fitted values in villages without local institutions and the solid line is for villages with
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Table 4. Results of the quantile regression for species richness (tau = 0.95) in the villages with presence
and absence of the local forest institutions.

Predictor Variable Parameter Estimate p Value

NDVI

institutions present 0.92 (˘4.1) 0.82
institutions absent ´5.8 (˘4.4) 0.18

institutions present: NDVI 17.72 (˘5.9) <0.001***
institutions absent: NDVI 6.19 (˘6.6) 0.35

SD–NDVI

institutions present 14.29 (˘0.9) <0.001***
institutions absent ´1.85 (˘1.3) 0.18

institutions present: SD–NDVI ´24.92 (˘11.6) 0.03*
institutions absent: SD–NDVI ´9.98 (˘22.8) 0.66

Wetness

institutions present 17.03 (˘0.9) <0.001***
institutions absent ´2.17 (˘1.3) 0.11

institutions present: Wetness 66.01 (˘12.2) <0.001***
institutions absent: Wetness ´10.94 (˘15.0) 0.46

Significance codes: *** 0.001, * 0.05, ¨ 0.1, 1.

3.4. Relationship between Species Dissimilarity and Spectral Dissimilarity

As the dissimilarity (beta diversity) between species sampled at different locations increases,
the spectral distance also increased. A fitted quantile regression line at different quantiles (0.95, 0.90,
0.75, 0.50) was used to help in describing the heterogeneity in tree composition. There was a weak
relationship between species similarity and spectral distance. We found no difference in terms of
species dissimilarity and spectral dissimilarity in villages with and without institutions (Table 5 and
Figure 7).
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Table 5. Quantile regression at 0.95, 0.90, 0.75 and 0.50 quantiles for villages with and without in forest
institutions categories, plotting species dissimilarity against spectral dissimilarity.

Parameter
Institutions Present Institutions Absent

Estimate p Value Estimate p Value

Intercept: tau 0.95 0.51 (˘0.003) <0.001*** 0.51(˘0.005) <0.001***
Slope: tau 0.95 ´0.00009 (0) <0.001*** ´0.00009 (0) <0.001***

Intercept: tau 0.90 0.45 (˘0.003) <0.001*** 0.43 (˘0.004) <0.001***
Slope: tau 0.90 ´0.00009 (0) <0.001*** ´0.00009 (0) <0.001***

Intercept: tau 0.75 0.33 (˘0.002) <0.001*** 0.30 (˘0.002) <0.001***
Slope: tau 0.75 ´0.0007 (0) <0.001*** ´0.00008 (0) <0.001***

Intercept: tau 0.50 0.20 (˘0.001) <0.001*** 0.17 (˘0.001) <0.001***
Slope: tau 0.50 ´0.00004 (0) <0.001*** ´0.00005 (0) <0.001***

Significance codes: *** 0.001.
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4. Discussion

Remotely sensed indices such as NDVI, SAVI, SD–NDVI, greenness, and wetness have been
previously demonstrated to be useful for the study of vegetation structure, composition and
quantification of tree density [9,10,49]. Previous research has utilized remotely sensed data to
estimate species richness, diversity, tree density and forest heterogeneity [50,51]. However, dry
tropical forests remain relatively less studied as compared to moist tropical forests. In this study of
a dry tropical forest in central India, dominated by deciduous species with a relatively open canopy
and low-relief topography, we demonstrated relationships between variables of tree composition and
density (tree density, species richness and biomass) and spectral values. Specifically, we found that
tree density, species richness, and biomass are positively related to NDVI and wetness, and negatively
related to SD–NDVI.

We adopted a quantile regression approach to investigate the relationship between spectral
indices and forest vegetation. Previous research had demonstrated the use of quantile regression
techniques to better capture aspects of ecological variability, as compared to conventional regression
approaches [13,46]. We first used quantile regression to set the threshold for tree density, species
richness and biomass at a high (0.95 tau) quantile. Setting the relationship to a higher quantile helped
in building a relationship with spectral values and the variation contributed by standing trees.

We found significant differences in tree density and species richness between villages with and
without forest management institutions, but there was no difference in biomass. Forest patches
where local people were involved in management had larger numbers of small trees with DBH less
than 15 cm that contributed to the density but did not contribute substantially to woody biomass
(Figure 4d). The local institutions in the villages studied were constituted not more than 10–15 years
ago. Therefore, the most evident effect of management on vegetation was in terms of increasing the
numbers of young trees. If the institutions persist, the biomass in these forests is likely to increase in
the future. Given better spatial or spectral resolution data, we may have been able to perceive some of
these differences even at this relatively early stage. However, even with Landsat data, we expect that
differences in biomass will be visible in a few years, commensurate with the differences in tree density
that we observe now.

Given the low rainfall in this climatic zone, trees in these dry deciduous forest areas tended to
be slow growing as compared to their moist tropical counterparts where there was a relatively rapid
increase in biomass. Studies have shown that the time elapsed since human interventions (including
the management, past condition of the forest and intensity of the management) has an effect on forest
structure and species composition [20,21]. The differences we observed could be a function of the
relative time because of management and the use of forests in different management regimes. Trees in
dry tropical forests can take as long as 20 years to regrow [52]. These forest patches could even take
longer because of the sustained levels of human use. The density of trees with small DBH can also
explain relative differences in the relationship between vegetation attributes and spectral values among
villages with and without local institutions. There were a greater number of small trees in the forest
patches with institutions as compared to those without institutions. As these small trees are under
the canopy, they did not contribute to an increased NDVI value. Therefore, the intercept of the tree
density relationship was higher in villages with institutions as compared to those without institutions.
However, the relationship between species richness and indices was not significantly different across
institutions. The villages shared a large number of similar tree species. Therefore, the difference in
species richness across institutions was not clearly captured by remotely sensed data. The relationship
between tree density and wetness was also not significantly different across institutions. This could be
because the habitat is a dry deciduous forest. Villages with institutions had a greater number of small
trees below the upper canopy. Indices of wetness were not able to capture this variation across villages
with and without institutions.

Recent studies have shown that as species dissimilarity increases, spectral dissimilarity also
increases. We also found a similar relationship between beta diversity and spectral heterogeneity [13,46].
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However, we were not able to find any difference in beta diversity in the villages with and without
institutions. This could be because the focus of the institutions is not on maintenance of species
diversity, in particular of beta diversity. The main focus of these institutions is on protecting their
forest patch from excessive tree felling, and on tree plantation. The major difference found in villages
with institutions is in terms of regeneration (natural as well as via plantation), which leads to high tree
density [53].

Local institutions are known to play an important role in managing common pool resources
such as forests [36,54,55]. Understanding functionality of local institutions is very important for
conserving forests outside the protected area [55,56]. This study demonstrates that remotely sensed
data has the potential to monitor forest outcomes under different management regimes, and to
assess the effectiveness of local institutions on different parameters of forest quality such as tree
density, biomass, species richness and beta diversity. Such research that integrates ecology, remote
sensing and institutional research on forest management is useful for assessing the impact of forest
protection outside protected areas—an area that has been insufficiently studied despite its importance.
We demonstrated that tree density and species richness could be assessed in tropical forests by using
information provided by vegetation indices. Determining a relationship with remotely sensed data
can help in developing a better understanding of the role of institutions in forest management, so as to
provide better insights for policy. This is particularly relevant in this dry deciduous forest landscape,
which is a very important corridor for wildlife, and one that supports local livelihoods. Here, remote
sensing methods could serve as an important tool to understand complex socio-ecological processes.

5. Conclusions

This research demonstrated a significant potential of remote sensing for ecological monitoring of
how management decisions impact forests. However, a direct relationship with the presence or absence
of institutions was difficult to establish, mainly because of scale issues and complexities associated
with the functionality of institutions. This may be solved by higher spatial and spectral resolution
sensors in future analysis. Specifically, the availability of high temporal resolution data e.g., from the
Sentinel-2 constellation will make it possible to use seasonal data for evaluation of forests, while the
availability of LiDAR and very high spatial resolution data e.g., Worldview 2/3 will enable the testing
of other, less explored proxies such as tree height, canopy structural diversity and texture, all of which
can provide important insights in future studies [57].
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FDCM Forest Development Corporation of Maharashtra
JFM Joint Forest Management
PA Protected Area
PF Protected Forest
RF Reserve Forest
USGS United State Geological Survey
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NDVI Normalized Difference Vegetation Index
SD-NDVI Standard Deviation of Normalized Difference Vegetation Index
LiDAR Light Detection and Ranging
CFM Community forest management
GBH Girth at Breast Height
DBH Diameter at Breast Height
WGS84 World Geodetic System 1984

Appendix

Table A1. Comparison between villages with forest division based on Mann–Whitney U test.

Vegetation Variable Forest Division Statistic p Value

Tree density (no. of trees/ha)

Bhandara 7033.5 <00.1***
Brahmapuri 7137 <00.1***

Chandrapur_non_buffer 5994 <00.1***
Gadchiroli 5701.5 <00.1***

Gondia 5895 <00.1***
Nagpur 3789 0.4
Wadsa 6525 <00.1***

Species richness

Bhandara 5980.5 <00.1***
Brahmapuri 7497 <00.1***

Chandrapur_non_buffer 5251.5 <00.1***
Gadchiroli 5242.5 <00.1***

Gondia 4923 0.01**
Nagpur 3609 0.2
Wadsa 6129 <00.1***

Tree biomass

Bhandara 6012 <00.1***
Brahmapuri 7254 <00.1***

Chandrapur_non_buffer 3159 0.01**
Gadchiroli 3492 0.11

Gondia 4473 0.22
Nagpur 3978 0.8
Wadsa 2412 <00.1***

Significance codes: *** 0.001, ** 0.01.
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