
difficulty is that computations 

become significantly harder, 

and it becomes that much more 

d i f f i cu l t  to  p rogress  i n  

arithmetic. 

The Greeks did not have a symbol for zero, and 

it is not surprising that they did not develop arithmetic and 

algebra the way they developed geometry, which they took 

to great heights. It was in India that the symbol for zero 
thcame into being (probably as early as the 5  century), along 

with the rules for working with it. Not coincidentally, 

arithmetic and algebra grew in a very impressive manner in 

India, in the hands of Aryabhata, Brahmagupta, Mahavira, 

Bhaskaracharya II, and many others. 

On the other hand the ancient Indians did not progress 

anywhere as far in their study of geometry. But it is striking 

that one area where the methods of algebra and analysis 

enter into geometry in a natural way, namely trigonometry, 
thdid originate in India (in the work of Aryabhata, 5  century 

AD). 

Abstraction and the number concept 

Embedded in our brains is an extraordinary ability: the 

ability to form concepts; the ability to abstract common 

features and shared qualities from collections of objects or 

phenomena. It is this ability that lies behind the creation of 

language, and it is this that enables us to “invent” numbers. 

To understand what this means, think of a number, say 3. Is 

3 a thing? Can it be located somewhere? No, it cannot; but 

our brains have the ability to see the quality of “threeness” 

in collections of objects: three fingers, three birds, three 

kittens, three puppies, three people –  the feature they 

share is the quality of threeness. This ability is intrinsic to 

the very structure of our brains. Were it not there, we would
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“ ““Concepts are caught, not taught”. It 

is only by actual contact with 

collections of objects that concepts 

form in one's brain.

Pre-history

he concept of number is crucial to Mathematics, yet 

its origin may  forever be hidden from us, for it goes Tfar back in time. Human beings must have started 

long back to use the tally system for keeping records – 

livestock, trade, etc – but we may never know just when. A 

remarkable discovery made in 1960 in  Belgian Congo of 

the Ishango bone, dated to 20,000 years BP, suggests that 

the seeds of Mathematical thinking may go still further back 

than thought; for, carved on the bone are tally marks 

grouped in a deliberate manner, seemingly indicative of a 

Mathematical pattern (there is even a hint of a doubling 

sequence: 2, 4, 8). However, until further evidence is 

uncovered, the matter must remain as speculation. See the 

Wikipedia reference for more information.

Tally counting as a practice may well be as many as 50,000 

years old; even today we use it to count, in various 

contexts, e.g. in a class election.

Base ten number system 

The notation we use today – the base ten or decimal 

system – has its origins in ancient practices. Long back the 

Babylonians used a system based on powers of 60, and 

traces of that practice remain to this day – we still have 60 

seconds in a minute, 60 minutes in an hour, 60 minutes in a 

degree (for angular measure). Later the Egyptians 

developed a system based on powers of 10, in which each 

power of ten from ten till a million was represented by its 

own symbol. But this system differs from ours in a crucial 

way – it lacks a symbol for zero. 

A system of arithmetic without a symbol for zero suffers 

from two difficulties. The first is that there is confusion 

between numbers like 23, which represents 2 tens and 3 

units, and 203, which represents 2 hundreds and 3 units. 

Without the zero symbol some way has to be found to 

indicate that the 2 means “2 hundreds” and not “2 tens”. 

This can be done, but it is quite cumbersome. But a greater 
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element of play gets passed over in this viewpoint; the 

subject becomes something one must know, compulsorily, 

and the stage is set for a long term fearful relationship with 

the subject. 

From the earliest times – in Babylon, Greece, China, India – 

there has been a playful fascination with number patterns 

and geometrical shapes one can associate with numbers. 

From this are born number families – prime numbers, 

triangular numbers, square numbers, and so on.
 
Let us illustrate what the term “pattern” means in this 

context. We subdivide the counting numbers 1, 2, 3, 4, 5, 6, 

7, 8,... into two families, the odd numbers (1, 3, 5, 7, 9, 11, 

...), and the even numbers (2, 4, 6, 8, 10, 12, ...). If we keep 

a running total of the odd numbers here is what we get: 1, 

1+3 = 4, 1+3+5 = 9, 1+3+5+7 = 16, 1+3+5+7+9 = 25. 

Well! We have obtained the list of perfect squares!

There is a wonderful way we can show the connection 

between sums of consecutive odd numbers and the square 

numbers; it is pleasing to behold and incisive in its power at 

the same time. All we have to do is to examine the picture 

below: this property is closely related to one about the 

triangular numbers: the sequence 1, 3, 6, 10, 15, 21, 28, 

36, 45, 55, ... formed by making a running total of the 

counting numbers: 1, 1+2 = 3, 1+2+3 = 6, 1+2+3+4 = 10, 

etc. They are so called because we can associate triangular 

shapes with these numbers.

There is just one red square; when we put in three green 

squares around it, they together make a 2 by 2 square; 

hence we have 1 + 3 = 2 times 2.

Put in the five purple squares and now you have a 3 by 3 

square; hence 1 + 3 + 5 = 3 times 3.

Number: The Role of Pattern and Play in its Teaching

never be able to learn the concept of number (or any other 

such concept, because any concept is essentially an 

abstraction).

Even in something as simple as tally counting – creating a 

1-1 correspondence between a set of objects and a set of 

tally marks – our brains show an innate ability for 

abstraction: by willfully disregarding the particularities of 

the various objects and instead considering them as 

faceless entities. 

Realization of this insight has pedagogical consequence; 

for, as has been wisely said, “Concepts are caught, not 

taught”. It is only by actual contact with collections of 

objects that concepts form in one's brain. How exactly this 

happens is still not well understood, but I recall a comment 

which goes back to Socrates ( the teacher's role is akin to 
that of a midwife who assists in delivery). 

The invention of algebra represents  one more step up the 

ladder of abstraction. To illustrate what this means, let us 

examine these number facts: 1+3 = 4, 3+5 = 8, 5+7 = 12, 

7+9 = 16,  9+11 = 20. We see a clear pattern: the sum of 

two consecutive odd numbers is always a multiple of 4. This 

statement cannot be verified by listing all the possibilities, 

for there are too many of them – indeed, infinitely many. 

But we can use algebraic methods! We only have to 

translate the observation into the algebraic statement (2n-

1) + (2n+1) = 4n; this instantly proves the statement. Such 

is the power of algebra and also the power of abstraction – 

and this ability too is intrinsic to our brains.

Number patterns

Another feature intrinsic to the brain is the desire and 

capacity for play. Most mammals seem to have it, as we see 

in the play patterns of their young ones – and what a 

pleasing sight it can be, to watch kittens or puppies or baby 

monkeys at play! But human beings have a further ability: 

that of bringing patterns into their play. When our love of 

play combines with the number concept and with our love 

of patterns, Mathematics is born. For Mathematics is 

essentially the science of pattern. 

It is crucial to understand the element of play in 

Mathematics; for one is told, repeatedly, of the utility 

ofMathematics, how it plays a central role in so many areas 

of life, and how it is so important to one's career. But the 

Put in the seven blue squares, 

and now you have a 4 by 4 square; 

hence 1 + 3 + 5 + 7= 4 times 4.

And so on!

There are two striking properties that connect the triangular 

numbers with the square numbers  (1, 4, 9, 16, etc), and 

they can easily be found by children: (I) the sum of two 

consecutive triangular numbers is a square number; e.g., 

1+3 = 4, 3+6 = 9, 6+10 = 16, ...; (II) if 1 is added to 8 times 

a triangular number we get a square  e.g., (8 × 3) + 1 = 25, 

(8 × 6) + 1 = 49, (8 × 10) + 1 = 81.
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 Why is there such a nice connection? A lovely question to 

ponder over, isn't it?

Here is another pattern. Take any triple of consecutive 

numbers; say 3, 4, 5. Square the middle number; we get 

16. Multiply the outer two numbers with each other; we get 

3 times 5 which is 15. Observe that 16 – 15 = 1; the two 

numbers obtained differ by 1. Try it with some other triple, 

say 7, 8, 9: 8 squared is 64, 7 times 9 is 63, and 64 – 63 = 1; 

once again we get a difference of 1. Will this pattern 

continue? Yes, and it is easy to show it using algebra;  but 

think of what pleasure discovering this can give a young 

child playing with numbers!

We find a similar but more complex pattern with the famous 

Fibonacci sequence, which goes 1, 1, 2, 3, 5, 8, 13, 21, 34, 

55, ...; here, each number after the first two is the sum of 

the preceding two numbers (e.g., 8 = 5 + 3). Repeat the 

computation with this sequence. With the triple 2, 3, 5 we 

get: 3 squared is 9, and 2 times 5 is 10; the squared number 

is 1 less than the product of the other two. With the triple 3, 

5, 8 we get: 5 squared is 25, and 3 times 8 is 24; now the 

squared number is larger by 1. With 5, 8, 13 we get: 8 times 

8 is 64, and 5 times 13 is 65; once again the squared 

number is smaller by 1. And so it goes – a curious 

alternating pattern. 

We see the same thing if we study collections of four 

consecutive Fibonacci numbers; for example, 1, 2, 3, 5. The 

product of the outer two numbers is 5, and the product of 

the inner two is 6; they differ by 1. Take another such 

collection: 3, 5, 8, 13. The product of the outer two is 39, 

that of the inner two is 40; once again, a difference of 1. 

And again the alternating pattern continues. Astonishingly, 

even nature sees fit to use the Fibonacci numbers. If we 

keep records of the numbers of petals in various flowers, 

we find that the number is generally a Fibonacci number. 

Study the spirals in which pollen grains are arranged in the 

center of a sunflower; there are spirals running in clockwise 

and anticlockwise directions; you will find that the number 

of spirals of each kind is a Fibonacci number. Nature is just 

as fond of patterns as we are! 

Many years back I used a textbook called “Pattern and 

Power of Mathematics”. It is a nice title for a textbook, for 

patterns are what the subject is all about, and it is this that 

gives it its astonishing power. But – more important – it is 

this feature that makes us study the subject in the first 

place.

Large numbers, small numbers 

There are numbers, and then there are large numbers. 

Children naturally like large numbers, and many of them 

discover on their own that there is no last number: however 

large a number one may quote, one only needs to add 1 to it 

to get a larger number. So the number world has no 

boundary! There are some who make a similar discovery at 

the other end – with small numbers; I recall a student 

telling me, many years back, how she could make an 

unending sequence of tinier and tinier fractions, simply by 

halving repeatedly; she could not believe that such tiny 

numbers could exist!  She had made this wonderful 

discovery herself, and was very excited by it. 

The ancient Indians loved large numbers, and here's a 

problem that shows this love. If I ask you to find a squared 

number that is twice another squared number, you would 

never succeed, because there aren't any such pairs of 

numbers. (Why? – there's a nice story behind that, but we 

cannot go into that now.) So we change the problem a little 

bit: I ask for a squared number which exceeds twice 

another squared number by 1. Now we find many solutions; 

e.g., 9 and 4 are squared numbers, and 9 – (2 × 4) = 1. 

Here are some more solutions:

289 – (2 × 144) = 1, 

9801 – (2 × 4900) = 1. 

If we replace the word “twice” by “5 times” we find 

solutions to this too: 

81 – (5 × 16) = 1, 

(161 ×  161) – (5 × 72 × 72) = 1,

 and so on. 

thIn the 7  century, Brahmagupta asked if we could find 

solutions with “5 times” replaced by “61 times”. The 

smallest solution in this case is very large indeed – yet 

Brahmagupta found it: 

(1766319049 × 1766319049) - (61 × 226153980 × 

226153980) = 1.
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Feel free to verify the relation. 

I think the date is significant: the Indians were asking such 

questions thirteen centuries back! The love of play has 

been there in all human cultures, for a long time. There's 

no holding it back. 

But now a strange thing happens. What began as play takes 

wing, and flies away a mature subject, with an inner 

cohesiveness and structure that is strong enough to find 

application in the world of materials, living bodies, and 

finance – the “real world”. Such flights have happened two 

dozen times or more in history, and no one really knows 

how and why they happen; but they do. Maybe it is God's 

gift to us. (But we do not always use it as intended; the 

power of Mathematical methods also finds application in 

the design of bombs and nuclear submarines and other 

instruments of killing.)

Closing note 

There are so many topics in which we can bring out the 

theme of pattern and play in Mathematics: 

?Magic squares (arranging a given set of 9 numbers in a 3 

by 3 array, or 16 numbers in a 4 by 4 array, so that the row 

sums, column sums, diagonal sums are all the same); not 

only do these bring out nice number relationships, but in 

the course of the study one learns about symmetry.           
           
?Cryptarithms (solving arithmetic problems in which 

digits have been substituted by letters; for example, ON + 

ON + ON + ON = GO; many simple but pleasing 

arithmetical insights emerge from the study of such 

problems); 

?Digital patterns in the powers of 2 (list the units digits of
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 the successive powers of 2; what do you notice? Now do 

the same with the powers of 3; what do you notice?) 

These examples are woven around the theme of number, 

but the principle extends to geometry in an obvious way. 

Here we study topics like rangoli and kolam; paper folding; 

designs made with circles; and so on. 

Alongside such activities, teachers could also raise 

questions relating to the role of Mathematics in society, for 

discussion with students and fellow teachers; e.g., 

questions relating to the use of Mathematics for destructive 

purposes, or more generally, "When is it appropriate to use 

Mathematics?"; or the question of why society would want 

to support mathematical activity. After all, most artists find 

patrons or buyers for their art work, but mathematicians do 

not sell theorems for a living! Is it that policy makers see 

Mathematics as a useful tool, and thus enable people in this 

field to sustain themselves, by teaching or doing useful 

Mathematics? The notion of usefulness takes us back to the 

question of appropriateness of usage. Such questions are 

not generally seen as fitting into a Mathematics class, but 

there is clearly a place for them in promoting a culture of 

discussion and inquiry.

We need not try to make a complete listing here – it is not 

possible, because it is too large a list, and ever on the 

increase. Instead, we wish only to emphasize here that 

pattern and play are crucial to the teaching of Mathematics, 

for pedagogic as well as psychological reasons. 

A great opportunity is lost when we make Mathematics into 

a heavy and serious subject reserved for the highly 

talented, and done under an atmosphere of heavy 

competition. It denies the experience of Mathematics to so 

many. 
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