Browse by Document type
Up a level |
November 2013
Athmaraman, R. (2013) Problems for the Middle School. At Right Angles, 2 (3). pp. 1-3. ISSN 2582-1873
Community Mathematics Centre, CoMaC (2013) A tale of two formulas. At Right Angles, 2 (3). pp. 57-60. ISSN 2582-1873
DE VILLIERS, M (2013) A Trapezium theorem generalized. At Right Angles, 2 (3). pp. 53-56. ISSN 2582-1873
De, Prithwijit and Shirali, Shailesh (2013) Problems for the senior school. At Right Angles, 2 (3). pp. 64-65. ISSN 2582-1873
Gaur, Shiv (2013) An ‘Origamics’ activity : X-lines. At Right Angles, 2 (3). pp. 46-48. ISSN 2582-1873
Mishra, P and Gaurav, B (2013) Introducing Ambigrams. At Right Angles, 2 (3).
Mishra, Punya and Bhatnagar, Gaurav (2013) Of Art & math : introducing ambigrams. At Right Angles, 2 (3). pp. 28-33. ISSN 2582-1873
Mukunda, N (2013) Book reviews. At Right Angles, 2 (3). pp. 66-74. ISSN 2582-1873
Orlin, Ben (2013) A fight with Euclid. At Right Angles, 2 (3). pp. 9-13. ISSN 2582-1873
Ramachadran, A (2013) The Gregorian calendar. At Right Angles, 2 (3). pp. 1-3. ISSN 2582-1873
Ramachandran, A. (2013) Geometric solution to the 120 degree problem. At Right Angles, 2 (3). p. 1. ISSN 2582-1873
Ramesh, Sreekantan (2013) Yitang Zhang and the twin primes conjecture. At Right Angles, 2 (3). pp. 14-17. ISSN 2582-1873
Sethuraman, B A (2013) Fermat numbers. At Right Angles, 2 (3). pp. 19-23. ISSN 2582-1873
Shirali, Padmapriya (2013) Exploration of Recurring Decimals. At Right Angles, 2 (3). pp. 49-52. ISSN 2582-1873
Shirali, Padmapriya (2013) Teaching subtraction. At Right Angles, 2 (3). pp. 1-16. ISSN 2582-1873
Shirali, Shailesh (2013) How to prove It. At Right Angles, 2 (3). pp. 37-40. ISSN 2582-1873
Shirali, Shailesh (2013) The closing bracket . . At Right Angles, 2 (3). ISSN 2582-1873
Sreedevi, Sindhu and Banrejee, Joyita and Titus, Sneha (2013) Teacher’s diary on classroom assessment. At Right Angles, 2 (3). pp. 41-45. ISSN 2582-1873
Sury, B (2013) Harmonic sequence and pascal’s triangle. At Right Angles, 2 (3). pp. 1-4.
Tikekar, VG (2013) There are infinitely many primes. At Right Angles, 2 (3). pp. 5-8. ISSN 2582-1873